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Key Takeaways 

 

A t-statistic measures the importance of variables to a prediction when the prediction is formed 
from linear regression analysis.  However, it is difficult to interpret if the predictive variables are 
collinear, and it is impossible to interpret if the relationship shifts as conditions change.  
 
A Shapley value measures the importance of variables used in machine learning models, but it 
only considers reliability on average across all predictions.  It does not account for a variable’s 
contribution to the reliability of individual predictions. 
 
Relevance-based importance gives a measure of variable importance that is robust to 
collinearity and conditionality.  It accounts for a variable’s contribution to reliability on average 
across all predictions as well as its contribution to the reliability of individual predictions. 
 
 
 

mailto:mczasonis@statestreet.com
mailto:kritzman@mit.edu
mailto:dturkington@statestreet.com


2 
 

 

Abstract 

The notion of variable importance is not uniquely defined.  If a prediction is formed from a 

linear regression model, it is common to measure variable importance as a t-statistic, but a t-

statistic is difficult to interpret if the predictive variables are collinear, and it is uninterpretable 

if the relationship between the predictive variables and the outcomes shifts as conditions 

change.  A Shapley value measures variable importance when a prediction is formed from 

machine learning models.  It is robust to collinearity and conditionality, but it does not account 

for a variable’s contribution to the reliability of individual predictions.  It only considers a 

variable’s contribution to the reliability of predictions on average across all predictions.  The 

authors introduce a new measure of variable importance, called relevance-based importance 

that, unlike a t-statistic, is robust to collinearity and conditionality and, unlike a Shapley value, 

accounts for a variable’s contribution to the reliability of individual predictions.  The authors 

show that in the special case in which the predictive variables are uncorrelated with one 

another and the relationship remains constant, relevance-based importance provides the same 

information as a t-statistic when averaged across all predictions.  They also show that when 

relevance-based importance is averaged across all predictions, it converges to the Shapley 

value where the chosen value function is the R-squared of a linear regression model.   
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RELEVANCE-BASED IMPORTANCE: 

A COMPREHENSIVE MEASURE OF VARIABLE IMPORTANCE IN PREDICTION 

 

When we form a prediction from data, we must select predictive variables that we believe to be 

important to the prediction.  We typically lean on theory, observation, and intuition to guide us 

initially.  But we also seek to validate our assessment of a variable’s importance by observing 

what the data reveals to us.  Validation of a variable’s importance can be challenging, though, 

because the notion of importance is not uniquely defined and because some definitions of 

importance are difficult or even impossible to interpret under certain conditions.   

 We introduce a new measure of variable importance, called relevance-based 

importance, hereafter referred to as RBI, that overcomes important limitations of widely used 

alternative measures.  We demonstrate mathematically and by simulation that RBI compares 

favorably to a t-statistic, which is the conventional measure of variable importance for linear 

regression models, and it compares favorably to a Shapley value, which is used to measure 

variable importance in machine learning models.   

We do not consider causality in our analysis of variable importance because our interest 

is with prediction, not how best to intervene in a relationship to change an outcome.  

Moreover, causality does not affect the issues we address in our analysis.  

 We proceed as follows.  We first describe relevance-based prediction and show how RBI 

is a natural byproduct of this prediction method.  We then introduce RBI.  Next, we compare 

RBI to a t-statistic.  We start by considering the special case in which the predictive variables are 

uncorrelated with each other and the relationship between the predictive variables and the 
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outcomes is constant across the full sample of observations.  This special case allows us to 

connect RBI’s prediction-specific measure of variable importance to a t-statistic’s measure of 

average importance.  We then relax the assumption that the predictive variables are 

uncorrelated and show how RBI accounts for collinearity more carefully than a t-statistic.  We 

then consider relationships between predictive variables and outcomes that shift as conditions 

change and discuss how RBI, unlike a t-statistic, accounts for this conditionality.  Next, we 

compare RBI to a Shapley value, which like RBI, accounts for collinearity and conditionality.  We 

show that both measures account for a variable’s contribution to reliability on average across 

all predictions, but that only RBI accounts for a variable’s contribution to the reliability of 

individual predictions.  We then present an empirical analysis of RBI for a set of variables used 

to predict stock market volatility.  We conclude with a summary. 

 

Relevance-Based Prediction 

RBI is a natural byproduct of relevance-based prediction.  Therefore, to understand how RBI is 

computed and to appreciate its useful properties, we first describe relevance-based prediction, 

which has three key components: relevance, fit, and grid prediction.1   
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Relevance 

Relevance is a precise statistical measure of the importance of an observation to a prediction.  

It is composed of similarity and informativeness, which are both measured as Mahalanobis 

distances, as shown by Equations 1 through 4.2  

𝑟𝑖𝑡 = 𝑠𝑖𝑚(𝑥𝑖, 𝑥𝑡) +
1

2
(𝑖𝑛𝑓𝑜(𝑥𝑖, 𝑥̅) + 𝑖𝑛𝑓𝑜(𝑥𝑡, 𝑥̅))   (1) 

𝑠𝑖𝑚(𝑥𝑖 , 𝑥𝑡) = −
1

2
(𝑥𝑖 − 𝑥𝑡)Ω−1(𝑥𝑖 − 𝑥𝑡)′   (2) 

𝑖𝑛𝑓𝑜(𝑥𝑖, 𝑥̅) = (𝑥𝑖 − 𝑥̅)Ω−1(𝑥𝑖 − 𝑥̅)′    (3) 

𝑖𝑛𝑓𝑜(𝑥𝑡, 𝑥̅) = (𝑥𝑡 − 𝑥̅)Ω−1(𝑥𝑡 − 𝑥̅)′    (4) 

In Equations 1 through 4, 𝑥𝑖  is a vector of the values of 𝐾 predictive variables for a prior 

observation, 𝑥𝑡 is a vector of the values of the predictive variables for a specific prediction task, 

𝑥̅ = 1𝑁1𝑁
′ 𝑋𝑁−1 is the average of the predictive variables across all observations, and Ω−1 is the 

inverse covariance matrix of all the observations of the variables.  The vector (𝑥𝑖 − 𝑥𝑡) 

measures how distant the observations are independently from the circumstances of the 

prediction task.  By multiplying this vector by the inverse covariance matrix, we capture the 

interaction of the predictive variables, and at the same time we standardize the distances by 

dividing by variance.  By multiplying this product by the transpose of the vector (𝑥𝑖 − 𝑥𝑡) we 

consolidate the outcome into a single number.  All else being equal, observations that are like 

current circumstances but different from average circumstances are more relevant than those 

that are not.   
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This definition of relevance is not arbitrary.  We know from information theory that the 

information contained in an observation is the negative logarithm of its likelihood.3  We also 

know from the Central Limit Theorem that the relative likelihood of an observation from a 

multivariate normal distribution is proportional to the exponential of a negative Mahalanobis 

distance.  Therefore, the information contained in a point on a multivariate normal distribution 

is proportional to a Mahalanobis distance.   

Relevance-based prediction forms a prediction as a weighted average of prior outcomes 

for 𝑌.   

𝑦̂𝑡 = ∑ 𝑤𝑖𝑡𝑦𝑖
𝑁
𝑖=1      (5) 

If we define weights in terms of relevance as follows, which admits the relevance-

weighted average of every prior outcome in the observed data sample, the result is precisely 

equivalent to the prediction that results from linear regression analysis.4   

𝑤𝑖𝑡,𝑙𝑖𝑛𝑒𝑎𝑟 =
1

𝑁
+

1

𝑁−1
𝑟𝑖𝑡     (6) 

In most cases, however, we can produce a more reliable prediction by censoring the 

observations that are less relevant than a chosen threshold, which leads to the following 

definition of prediction weights.   

𝑤𝑖𝑡,𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑 =
1

𝑁
+

𝜆2

𝑛−1
(𝛿(𝑟𝑖𝑡)𝑟𝑖𝑡 − 𝜑𝑟̅𝑠𝑢𝑏)   (7) 

𝛿(𝑟𝑖𝑡) = {
1    𝑖𝑓 𝑟𝑖𝑡 ≥ 𝑟∗

0    𝑖𝑓 𝑟𝑖𝑡 < 𝑟∗     (8) 
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𝜆2 =
𝜎𝑟,𝑓𝑢𝑙𝑙

2

𝜎𝑟,𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑
2 =

1

𝑁−1
∑ 𝑟𝑖𝑡

2𝑁
𝑖=1

1

𝑛−1
∑ 𝛿(𝑟𝑖𝑡)𝑟𝑖𝑡

2𝑁
𝑖=1

    (9) 

In Equations 6 through 9, 𝑛 = ∑ 𝛿(𝑟𝑖𝑡)𝑁
𝑖=1  is the number of observations that are fully 

retained, 𝜑 = 𝑛/𝑁 is the fraction of observations in the retained sample, and 𝑟̅𝑠𝑢𝑏 =

1

𝑛
∑ 𝛿(𝑟𝑖𝑡)𝑟𝑖𝑡

𝑁
𝑖=1  is the average relevance value of the observations in the retained sample.  It is 

important to note that 𝑤𝑖𝑡,𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑 depends crucially on the prediction circumstances 𝑥𝑡.  

Relevance is reassessed for each prediction circumstance which further affects the 

identification of the retained subsample and introduces nonlinear conditional dependence of 

the prediction 𝑦̂𝑡 on the prediction circumstances 𝑥𝑡.  The scaling factor 𝜆2 compensates for a 

bias that would otherwise result from relying on a small subsample of highly relevant 

observations.  In the case of linear regression analysis 𝑛 = 𝑁 and 𝜆2 = 1.  Lastly, note that the 

regression weights always sum to 1.5   

 

Fit 

Fit reveals how much confidence we should have in a specific prediction task, separately from 

the confidence we have in the overall prediction routine.  In addition, fit provides a principled 

way to evaluate the relative merits of alternative calibrations for each prediction task.   

Consider a pair of observations that are used to form a prediction.  Each observation has 

a weight and an outcome.  We are interested in the alignment of the weights of the two 

observations with their outcomes.  We first standardize them by subtracting the average value 

and dividing this difference by standard deviation – in essence, converting them to z-scores.  
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We then measure their alignment by taking the product of these standardized values.  If the 

product is positive, their relevance is aligned with their outcomes, and the larger the product, 

the stronger the alignment.  We perform this calculation for every pair of observations in our 

sample.  We should also note that all the formulas we have thus far considered for weights rely 

only on relevance, which in turn relies only on the 𝑥𝑖s, the 𝑥𝑡, and the 𝑥̅.  They do not use any of 

the information from observed outcomes.  To determine fit, however, we must consider 

outcomes (the 𝑦𝑖s).   

𝑓𝑖𝑡𝑡 =
1

(𝑁−1)2
∑ ∑ 𝑧𝑤𝑖𝑡

𝑧𝑤𝑗𝑡
𝑧𝑦𝑖

𝑧𝑦𝑗𝑗𝑖     (10) 

Equation 11 intuitively describes fit as the squared correlation of relevance weights and 

outcomes, which conceptually matches the notion of the conventional R-squared statistic.  As 

we soon show, this connection of fit to R-squared is critically important.   

𝑓𝑖𝑡𝑡 = 𝜌(𝑤𝑡, 𝑦)2     (11) 

Although we compute fit from the full sample of observations, the weights that 

determine fit vary with the threshold we choose to define the relevant subsample.  As we focus 

the subsample on observations that are more relevant, we should expect the fit of the 

subsample to increase, but we should also expect more noise as we shrink the number of 

observations.  The fit across pairs of all observations in the full sample implicitly captures this 

tradeoff between subsample fit and noise by overweighting observations that are more 

relevant and underweighting observations that are less relevant.   
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Like relevance, fit is not arbitrary.  In the case of linear regression analysis with 𝑛 = 𝑁, 

the informativeness-weighted average fit across all prediction tasks in the observed sample 

equals R-squared.6  

𝑅2 =
1

𝑁−1
∑ 𝑖𝑛𝑓𝑜(𝑥𝑡, 𝑥̅)𝑓𝑖𝑡𝑡

𝑁
𝑡=1     (12) 

Censoring observations that fall below a relevance threshold is more effective to the 

extent there is asymmetry between the fit of the weights formed from the retained subsample 

of observations and the fit of the weights formed from the complementary set of censored 

observations.  We measure asymmetry between the fit of the retained and censored 

subsamples as shown by Equation 13.  The (+) superscript designates weights formed from the 

retained observations while the (−) superscript designates weights formed from the censored 

observations.  Asymmetry recognizes the benefit of censoring non-relevant observations that 

contradict the predictive relationships that exist among the relevant observations.  This 

assessment also inherently considers the relative sample sizes of the two subsamples.   

𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑡 =
1

2
(𝜌(𝑤𝑡

(+)
, 𝑦) − 𝜌(𝑤𝑡

(−)
, 𝑦))

2

                  (13) 

To calculate adjusted fit, we add asymmetry to fit and multiply this sum by 𝐾, the 

number of predictive variables included in the prediction, as shown by Equation 14.  

Multiplication by the number of predictive variables allows us to compare predictions based on 

different numbers of predictive variables.  Adjusted fit recognizes that we are more likely to 

observe a spurious relationship from prediction weights based on just one or a few variables 

than we are based on a collection of many variables.   
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𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝑡 = 𝐾(𝑓𝑖𝑡𝑡 + 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦𝑡)   (14) 
 

 

Grid Prediction 

Grid prediction employs a grid in which the columns represent different combinations of 

predictive variables, and the rows represent subsamples of observations determined by 

different relevance thresholds.  Each cell contains a prediction and an associated adjusted fit.  

The assessment of reliability using adjusted fit occurs before the prediction is rendered and the 

subsequent outcome is known.  Grid prediction forms a composite prediction as a reliability-

weighted average of the predictions from all possible calibrations.  Equation 15 defines 

reliability weights, 𝜓𝜃, as the adjusted fit for a parameter calibration, 𝜃, divided by the sum of 

all adjusted fits across all parameter calibrations.   

𝜓𝜃 =
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝜃

∑ 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝜃̃𝜃̃

     (15) 

Equation 16 describes the composite prediction.   

𝑦̂𝑡,𝑔𝑟𝑖𝑑 = ∑ 𝜓𝜃𝑦̂𝑡,𝜃𝜃      (16) 

Exhibit 1 gives a visual representation of grid prediction based on a contrived data set of 

four predictive variables and 400 randomly simulated observations.  The columns represent 

different subsets of variables, and the rows represent different subsamples of observations as 

determined by different relevance thresholds.  Each cell represents a calibration 𝜃; that is, a 

unique combination of retained predictive variables and retained observations.  The values 

shown in the cells in Exhibit 1 are the weights (𝜓𝜃) we apply to the calibration-specific 
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predictions to form the composite grid prediction.  Blue cells are more important to forming the 

prediction than red cells.  The values in the grid are specific to each prediction task.   

Exhibit 1: Grid Prediction – Illustrative Example 

 

Note that each cell’s prediction is a linear function of observations, and the grid 

prediction is a linear function of each cell’s prediction.  Therefore, we can express the grid 

prediction in terms of composite weights applied to each observation, as shown by Equation 

17.  Composite weights are important because they preserve the transparency of each 

observation’s contribution to the current prediction task, and they allow us to calculate fit from 

composite weights as a final gauge of the grid prediction’s reliability.  

𝑤𝑖𝑡,𝑔𝑟𝑖𝑑 = ∑ 𝜓𝜃𝑤𝑖𝑡,𝜃𝜃      (17) 

 

ABCD ABC ABD ACD BCD AB AC AD BC BD CD A B C D

0 1.5% 1.5% 1.1% 1.0% 1.2% 1.0% 0.9% 0.7% 1.4% 0.8% 0.0% 0.4% 0.7% 0.0% 0.0%

0.1 0.7% 0.8% 0.6% 0.5% 0.6% 0.5% 0.5% 0.4% 0.8% 0.4% 0.1% 0.2% 0.4% 0.1% 0.0%

0.2 0.7% 1.0% 0.7% 0.5% 0.6% 0.7% 0.6% 0.4% 0.9% 0.4% 0.1% 0.3% 0.5% 0.1% 0.1%

0.3 0.9% 1.2% 0.8% 0.6% 0.6% 0.8% 0.7% 0.5% 1.1% 0.4% 0.2% 0.4% 0.6% 0.1% 0.1%

0.4 0.9% 1.3% 0.8% 0.6% 0.6% 1.0% 0.8% 0.5% 1.3% 0.4% 0.2% 0.4% 0.6% 0.2% 0.1%

0.5 0.9% 1.4% 0.9% 0.7% 0.7% 1.0% 0.8% 0.5% 1.3% 0.5% 0.2% 0.4% 0.7% 0.2% 0.1%

0.6 1.0% 1.4% 0.9% 0.7% 0.7% 1.0% 0.8% 0.5% 1.3% 0.5% 0.2% 0.4% 0.7% 0.2% 0.1%

0.7 1.0% 1.5% 0.9% 0.7% 0.7% 1.0% 0.8% 0.6% 1.4% 0.5% 0.4% 0.4% 0.7% 0.3% 0.2%

0.8 1.0% 1.6% 0.9% 0.7% 0.7% 1.0% 0.9% 0.6% 1.6% 0.5% 0.4% 0.5% 0.8% 0.4% 0.2%

0.9 1.2% 1.6% 1.1% 0.8% 0.7% 1.1% 1.0% 0.7% 1.2% 0.6% 0.1% 0.5% 0.6% 0.1% 0.1%

Variable combinations

r*



12 
 

RBI 

RBI measures a variable’s total contribution to the reliability of a specific prediction.  All the 

information needed to compute RBI is contained within the prediction grid.  

As shown by Equation 18, 𝑅𝐵𝐼𝑡𝑘 for prediction 𝑡 and variable 𝑘 is computed as the 

weighted average adjusted fit for grid cells that contain 𝑘 (for which the variable censoring 

indicator Δ𝑘(𝜃) = 1) minus the weighted average adjusted fit for cells that do not contain 𝑘 

(for which Δ𝑘(𝜃) = 0).  We express RBI as a sum over all grid cells 𝜃. 

𝑅𝐵𝐼𝑡𝑘 = ∑ 𝛼𝜃
Δ𝑘(𝜃)(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝑡𝜃)−(1−Δ𝑘(𝜃))(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝑡𝜃)

∑ Δ𝑘(𝜃̃)𝜃̃
𝜃   (18) 

The term ∑ Δ𝑘(𝜃̃)𝜃̃  counts the number of cells that include variable 𝑘.  For a grid that 

includes every variable combination, this number is nearly equal to the number of cells that do 

not include variable 𝑘, but the counts are not identical unless we include a column in the grid 

for predictions that do not use any of the 𝑋 variables (for which adjusted fit is always zero).  

Thus, we divide by the number of cells that include variable 𝑘 regardless of whether a given cell 

contains 𝑘 or not.   

Alternatively, we may interpret RBI as a weighted average of the differences in adjusted 

fit for pairs of cells that are otherwise identical in specification other than the inclusion of 

variable 𝑘 in one case.  We also include a scaling term, 𝛼𝜃, which adjusts the otherwise equal 

weights defined by ∑ Δ𝑘(𝜃̃)𝜃̃ .  This scaling term accounts for the fraction of all cells that include 

the same number of non-𝑘 variables as the current cell, which for notational simplicity we 

denote simply as 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝜃.  To the extent this fraction differs from 1/𝐾, the influence of the 
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cell is either increased or decreased.  This scaling term boosts the influence of subsets of 

variables that are more sparsely represented in the grid, so that each size subset has equal 

influence on the result.  As we will describe later, this adjustment enables RBI to converge to the 

Shapley value formula.  However, we show that in practice it gives results that are nearly 

identical to results based on the much simpler weighting scheme of 𝛼𝜃 = 1.    

𝛼𝜃 =
1

𝐾

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝜃
       (19) 

 The value of RBI may be positive, zero, or negative.  A positive value indicates that a 

variable adds value to the reliability of a prediction, and the higher the value the more 

substantial its contribution.  A zero, or near-zero, value indicates that a variable contributes 

benign noise to a prediction.  A negative value indicates that a variable contributes harmful 

noise to a prediction by generally obscuring the effects of otherwise compelling relationships.   

 

Properties of RBI 

The prediction grid reveals several useful properties of RBI. 

▪ RBI is prediction specific.  RBI is calculated from the adjusted fits of the predictions 

associated with the grid cells.  The adjusted fits are calculated from the relevance values 

of the observations.  These values are determined by the specific circumstances of each 

prediction task.  Therefore, RBI explicitly considers the specific circumstances of each 

individual prediction task.   
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▪ RBI measures a variable’s total importance.  RBI is calculated from the grid columns, 

which collectively account for every configuration in which a variable is used to form a 

prediction irrespective of the usage of the other variables.  A variable can be recognized 

for containing useful predictive information even if the same information overlaps with 

other variables.  RBI, therefore, measures each variable’s total contribution to a 

prediction’s reliability.   

▪ RBI accounts for conditionalities.  The top row of the grid uses the full sample of 

observations.  The predictions formed by these cells reflect the unconditional (linear) 

part of the relationship between the predictive variables and the outcomes across the 

full sample of observations.  The remaining rows of the grid use subsamples of 

observations to form predictions from the premise that conditions change and cause 

the relationship to shift from its unconditional pattern.  Although the relationship 

between the predictive variables and the outcomes may not be consistent across the 

full sample of observations, it is more consistent within these condition-specific 

subsamples.  To the extent the adjusted fits of the predictions given by the cells below 

the first row are relatively high, RBI accounts for conditionalities that defy independent 

relationships across variables.  

▪ RBI accounts for a prediction’s reliability.  RBI is calculated from adjusted fit which 

measures the alignment of relevance and outcomes across all pairs of observations that 

go into a prediction.  This alignment gives a measure of a prediction’s reliability, which 

means that RBI explicitly accounts for reliability as opposed to just the magnitude of a 

prediction. 
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We next explore the connection of RBI to a t-statistic. 

 

RBI Compared to a t-statistic 

A t-statistic measures the estimated average response of the outcome 𝑌 that is being predicted 

to a one-unit change in a predictive variable, divided by the standard error of the estimated 

average response, as shown by Equation 20. 

𝑡𝑘 =
𝛽̂𝑘

𝑆𝐸(𝛽̂𝑘)
     (20) 

In Equation 20, 𝛽̂𝑘is the observed linear regression coefficient of the predictive variable, 

and 𝑆𝐸(𝛽̂𝑘) equals the standard error of 𝛽̂𝑘.7 

 A t-statistic’s main virtue is that it accounts for the reliability of the predictions because 

it is estimated from the predicted values as well as the outcomes.  A t-statistic is limited in 

three critical ways, however.  (1) It only measures average importance across all predictions; it 

does not measure the importance of a variable to an individual prediction.  (2) It only measures 

a variable’s marginal importance and not its total importance.  (3) It fails to address 

conditionalities, which is to say, it is uninterpretable if a relationship shifts away from its typical 

average pattern when conditions change. 

 RBI shares a t-statistic’s main virtue in that it too considers reliability.  But it does not 

suffer from the limitations of a t-statistic, as is evident from the earlier discussion of RBI’s useful 

properties.   
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 A t-statistic’s inability to measure total importance deserves further consideration.  This 

limitation arises when the predictive variables are collinear, even if there are no conditionalities 

that complicate the overall relationship between the predictive variables and the outcomes.  If 

the predictive variables are uncorrelated with each other, a t-statistic does measure the total 

importance of a predictive variable.  This special case gives rise to an important near 

equivalence.  An informativeness-weighted average of RBI across all prediction tasks nearly 

converges to a squared t-statistic in the absence of collinearity and conditionality. 

𝜏𝑘
2 =

(𝑁−𝐾)

1−𝑅2
∑ 𝜔𝑡𝑅𝐵𝐼𝑡𝑘𝑡     (21) 

𝜔𝑡 =
𝑖𝑛𝑓𝑜(𝑥𝑡)

𝐾(𝑁−1)
     (22) 

 In Equation 21, 𝜏𝑘
2 equals the average RBI approximation to the squared t-statistic 𝑡𝑘

2, 

and in Equation 22, 𝑖𝑛𝑓𝑜(𝑥𝑡) is from Equation 7 and is computed using all 𝐾 predictive 

variables. 

This near equivalence of average RBI and a t-statistic in this special case reveals a t-

statistic to be a special case of average RBI, which reconciles their seemingly different 

interpretations.  We defined RBI as a predictive variable’s contribution to the reliability of a 

prediction, while we defined a t-statistic as the sensitivity of the outcome being predicted to a 

one-unit change in the predictive variable divided by the standard error of this sensitivity.  In 

the absence of collinearity, these definitions converge.  However, if the predictive variables are 

collinear, a t-statistic’s definition of importance holds only as a measure of marginal 

importance, whereas RBI always measures total importance. 
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 This comparison of total importance and marginal importance merits further 

explanation.  As we show in Appendix B, we can express a squared t-statistic equivalently as a 

function of R-squared.  

𝑡𝑘
2 =

(𝑁−𝐾)

1−𝑅2 (𝑅2 − 𝑅\𝑘
2 )    (23) 

 In Equation 23, 𝑅2 applies to a prediction that uses all 𝐾 predictive variables, whereas 

𝑅\𝑘
2  apples to a prediction that uses all the variables except variable 𝑘.  As we mentioned 

earlier, RBI measures total importance because it is calculated from every combination of 

predictive variables.  As Equation 23 shows, a squared t-statistic expressed as a function of R-

squared only considers R-squared with all the variables and R-squared with all the variables but 

variable 𝑘; hence, it only measures marginal importance.  However, we can expand Equation 23 

to consider all marginal differences in R-squared where variable 𝑘 is added to each cohort of 

variables including the null set, rather than only the cohort that already includes all the other 

variables, as shown by Equation 24.   

𝜏𝑘,𝑅𝑠𝑞𝑢𝑎𝑟𝑒𝑑
2 =

(𝑁−𝐾) ∑ 𝛼𝜃(
Δ𝑘(𝜃)𝑅𝜃

2 −(1−Δ𝑘(𝜃))𝑅𝜃
2

∑ Δ𝑘(𝜃̃)
𝜃̃

)𝜃

1−𝑅2
   (24) 

The sum in the numerator mirrors that of RBI from Equation 18, except that the 

expression pertaining to R-squared values applies to a summary assessment of predictions 

across all tasks rather than the adjusted fit of a specific prediction task.  Note that this concept, 

which naturally derives from grid prediction, equates to the Shapley method of assigning value 

which we will next discuss. 
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Empirically, we observe that the value 𝜏𝑘
2 which is aggregated from individual prediction 

variable importance is nearly equal to 𝜏𝑘,𝑅𝑠𝑞𝑢𝑎𝑟𝑒𝑑
2  which is computed at the level of an entire 

linear regression model.  Therefore, 𝑅𝐵𝐼𝑡𝑘 offers a prediction-level decomposition of 

𝜏𝑘,𝑅𝑠𝑞𝑢𝑎𝑟𝑒𝑑 analogous to how fit offers a prediction-level decomposition of R-squared for a 

single linear regression.8,9 

We can generalize the prediction from a single linear regression cell to a grid prediction 

that includes a row in the grid:  one linear regression cell for each variable combination.  

Though the grid predictions formed from a one-row grid are not identical to those from a one-

cell linear regression that includes every variable, they are highly similar.  

 

Simulation of Variable Importance with Uncorrelated Variables 

To support our claim of the convergence of RBI to a t-statistic when the predictive variables are 

uncorrelated with each other, we simulate 1,000 observations from prespecified distributions 

and then calculate variable importance as measured by RBI and by a t-statistic.  In this 

simulation, as well as the ones that follow, we assume that the relationship between the 

predictive variables and the outcomes is constant across the full sample of observations.  We 

do not allow for conditionalities that would alter the relationship.  

We begin by considering three 𝑋 variables that follow uncorrelated standard normal 

distributions.  We compute 𝑌 outcomes using linear betas of 1 for each 𝑋 variable and then add 

independent random noise with a standard deviation of 5.  
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The following exhibit shows the t-statistics of the three 𝑋 variables.  The simulation 

contains randomness, so the variables are not all equally important to explaining the outcomes.  

Nevertheless, all are highly statistically significant.  The 𝜏𝑘 values are similar to the t-statistics; 

however, they are slightly higher.  Note that the 𝜏𝑘 and 𝜏𝑘,𝑅𝑠𝑞𝑢𝑎𝑟𝑒𝑑 values are nearly identical.  

The R-squared decomposition at the model level consists of three values that sum to precisely 

the R-squared of a one-cell linear regression that includes all the predictive variables.   

Exhibit 2: Aggregate Variable Importance 
Correlations Equal 0 

 

 

 

Simulation of Variable Importance with Correlated Variables 

Exhibit 3 shows how variable importance measured by RBI and a t-statistic diverge when the 

predictive variables are correlated with one another.  In this simulation, we draw 𝑋 values from 

a multivariate normal distribution where 𝑋1 and 𝑋2 are 90 percent correlated.  𝑋3 remains 

uncorrelated to the other variables.  The t-statistics are much lower for 𝑋1 and 𝑋2, because 

each one largely substitutes for the other one, so neither one registers as important.  The 𝜏𝑘 

measure, however, registers 𝑋1 and 𝑋2 as both highly important, and each more so than 𝑋3.  

Intuitively, this may reflect the fact that 𝑋1 and 𝑋2 serve to validate each other’s predictive 

value, whereas 𝑋3 can only vouch for itself.  

X1 X2 X3

R-squared decomposition (model level) 0.0461 0.0497 0.0430

Informativeness-weighted RBI 0.0469 0.0491 0.0430

Linear regression t-statistic 7.00 7.51 6.94

RBI τ-statistic 7.36 7.53 7.04

RBI τ-statistic (simplified weighting) 7.37 7.53 7.05
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Exhibit 3: Aggregate Variable Importance 
 𝑋1 and 𝑋2 are 90 Percent Correlated 

 

 

 

Simulation of Variable Importance with Uncorrelated Variables and Different Betas 

Exhibit 4 shows variable importance again assuming all three 𝑋 variables are uncorrelated but 

this time with different assumed betas.  𝑋1 has a beta of 2 to 𝑌, 𝑋2 has a beta of 1, and 𝑋3 has 

a beta of 0.  Once again, the relative value assessment of the variables is sensible and intuitive.  

Exhibit 4: Aggregate Variable Importance  
Betas Equal 2, 1, and 0; Correlations Equal 0 

 

 

 

Simulation of Variable Importance with Correlated Variables and Different Betas 

Exhibit 5 preserves the same assumptions of differing betas, but now we assume that all three 

𝑋 variables have correlations of 0.5 with each other.  The relative rankings of the variables are 

consistent across the alternative measures.  But again, the t-statistics assign much lower 

X1 X2 X3

R-squared decomposition (model level) 0.0525 0.0495 0.0216

Informativeness-weighted RBI 0.0522 0.0500 0.0214

Linear regression t-statistic 2.84 2.18 5.05

RBI τ-statistic 7.67 7.51 4.91

RBI τ-statistic (simplified weighting) 7.69 7.53 4.95

X1 X2 X3

R-squared decomposition (model level) 0.1066 0.0397 0.0003

Informativeness-weighted RBI 0.1065 0.0397 0.0005

Linear regression t-statistic 11.08 6.68 0.49

RBI τ-statistic 11.13 6.80 0.74

RBI τ-statistic (simplified weighting) 11.14 6.81 0.82
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importance to variables for which much of their useful predictive information is captured by the 

other variables.  It remains the case, however, that even 𝑋3, which has no direct influence on 𝑌 

by assumption, contains useful information about 𝑌 through its correlation with the other 

variables.  The information given by 𝑋3 is useful not only in isolation (if 𝑋1 and 𝑋2 were 

omitted) but also as a confirmation mechanism for the information in the other variables.   

Exhibit 5: Variable Importance  
Betas Equal 2, 1, and 0; Correlations Equal 0.5 

 

 

 

RBI Compared to a Shapley Value 

A Shapley value is used to measure variable importance for predictions that are performed by 

machine learning models.  It was conceived from game theory to measure the contribution of 

participants in collaborative games.10  Like RBI, the Shapley value measures variable importance 

for individual predictions, it measures total importance, and it is robust to conditionality.  

However, a Shapley value is significantly limited compared to RBI because it does not account 

for an individual prediction’s reliability.  It is computed only from the observations’ predictions 

without consideration of how they compare to the outcomes for 𝑌.  Both RBI and a t-statistic 

account for reliability by considering both the predictions and the outcomes of the 

observations.   

X1 X2 X3

R-squared decomposition (model level) 0.1057 0.0624 0.0216

Informativeness-weighted RBI 0.1060 0.0621 0.0215

Linear regression t-statistic 9.04 5.51 -0.30

RBI τ-statistic 11.40 8.72 5.14

RBI τ-statistic (simplified weighting) 11.19 8.45 4.65
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The formula for a Shapley value is given by Equation 25. 

𝑆ℎ𝑎𝑝𝑙𝑒𝑦𝑘 =
1

𝐾
∑ (

𝐾 − 1
|𝑆|

)
−1

𝑆⊆𝐾\{𝑘} (𝑣(𝑆 ∪ {𝑘}) − 𝑣(𝑆))  (25) 

 If we consider Equation 25 within the context of variable importance in prediction rather 

than a cooperative game, 𝐾 is the full set of variables, 𝑆 is a subset of variables, 𝑘 is a specific 

variable, 𝑣 is a function that maps a subset of variables onto a scalar value, 𝑆 ⊆ 𝐾\{𝑘} 

represents iteration over all of the possible sets of variables composed of any number of the 𝐾 

total variables excluding the variable of interest, 𝑆 ∪ {𝑘} is the set of variables that combines 𝑆 

and the variable of interest, and (
𝐾 − 1

|𝑆|
) represents how many combinations of 𝐾 − 1 variables 

have the same size as 𝑆.   

When RBI is averaged across all predictions, it converges to a Shapley value where the 

chosen value function is the R-squared of a linear regression model.  When RBI is applied to 

individual predictions it represents the contribution of each variable to the prediction’s 

reliability (adjusted fit), which differs from Shapley values applied to predictions from machine 

learning models wherein the Shapley value is applied to the prediction value (𝑦̂𝑡) without 

regard to its reliability.   

We thus have the following comparisons.  A t-statistic considers average reliability but 

not total importance or conditionality.  A Shapley value measures total importance and is robust 

to conditionality for individual predictions, but it does not consider reliability except when 

applied to aggregate model outputs.  Only RBI measures total importance, is robust to 
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conditionality, and considers reliability both for individual predictions and on average across all 

predictions. 

 

Empirical Example 

We now compare variable importance as measured by RBI and a t-statistic for an empirical 

application to predicting market volatility.  This builds upon the simulation-based results by 

allowing for conditional relationships between predictive variables and outcomes.  The 

outcome we aim to predict is the subsequent one quarter (63-day) volatility of daily total 

returns of the S&P 500 index.  We use 14 predictive variables as described in Exhibit 6, which 

are observed at the time of each prediction.     

Exhibit 6: Predictive Variables 
 

  
 

 Our historical sample consists of non-overlapping quarterly observations from Q1 1986 

through Q4 2023.  We use the first half of our sample (Q1 1986 through Q4 2004) as training 

Predictive Variable Proxy Source

Market Conditions

Trailing 1-month volatility Trailing 21-day volatility of daily S&P 500 returns Bloomberg

Trailing 3-month volatility Trailing 63-day volatility of daily S&P 500 returns Bloomberg

Implied volatility CBOE VIX (with proxy based on options prices before 1990) CBOE

Trailing 1-month market return Trailing 21-day return of the S&P 500 Bloomberg

Trailing 3-month market return Trailing 63-day return of the S&P 500 Bloomberg

Financial Conditions

Short-term interest rate (level) Fed funds rate: 12-m average FRED

Short-term interest rate (change) 1-year change in short term interest rate FRED

Long-term interest rate (change) 1-year change in 10y constant maturity rate FRED

Credit spread (change) 1-year change in Baa corp. bond yield - 10y const. maturity rate FRED

Economic Conditions

Growth 1-year % change in industrial production FRED

Payrolls 1-year % change in non-farm payrolls FRED

Inflation 1-year % change in Consumer Price Index (CPI) FRED

Money supply 3-year % change in M2 money supply FRED

Debt-to-GDP 3-year change in public debt / GDP FRED
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data for relevance-based prediction and linear regression, and we reserve the second half (Q1 

2005 through Q4 2023) for out-of-sample testing.11 

For relevance-based prediction, we consider a grid consisting of every possible variable 

combination (grid columns) and observation censoring percentile thresholds of 0, 0.2, 0.5 and 

0.8 (grid rows).  We consider censoring based on relevance as well as censoring based on 

similarity, which essentially multiplies the number of grid cells by two.  Note that the cells that 

use censoring thresholds of zero are equivalent to linear regression predictions for a given set 

of predictive variables.  There are more than 16,000 grid cells; however, we use a sparse 

sampling method whereby for each prediction we consider the full sample linear cell, each of 

the 14 single variable linear cells, and 100 randomly selected cells from the rest of the grid, for 

a total of 115 cells for each prediction task.   

 

In-Sample Results 

We first apply relevance-based prediction and linear regression to the training sample (Q1 1986 

through Q4 2004) to measure the aggregate importance of the 14 predictive variables.  Exhibit 

7 shows the variables’ linear t-statistics (reported as absolute values to facilitate comparison), 

RBI 𝜏-statistics, as well as components of their respective calculations.  As shown in Exhibit 7, 

the relative rankings of the variables are similar between the linear and relevance-based 

measures, though there are notable divergences.  For example, trailing three-month volatility is 

one of the most important variables according to RBI, but it ranks among the least important 

variables based on its t-statistic.  The opposite is true for trailing one-month market returns.  In 
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part, these divergences arise from non-zero correlations between the variables (see Appendix C 

for their historical correlations), which we also observed in the simulation-based results.  

Additionally, in this empirical application we allow for conditional relationships between 

predictive variables and outcomes, which RBI captures, and t-statistics do not. 

Exhibit 7: Aggregate Variable Importance  
In-Sample Q1 1986-Q4 2004 

 

  
 
 

Thus far we have focused on the aggregate importance of variables across many 

predictions.  However, a key advantage of RBI is that it is prediction specific.  Exhibit 8 shows a 

heat map (red indicates lower values, blue indicates higher values) of prediction-level RBIs 

underlying the summary 𝜏-statistics in the previous table.  Because RBI explicitly considers the 

specific circumstances of each prediction task, it can vary meaningfully across predictions even 

when they are formed from the same training data.  For example, the previous table shows that 

in aggregate, money supply was the most important predictive variable based on its 𝜏-statistic; 

Partial Absolute R-squared Info-Weighted RBI

R-squared t-statistic Decomposition RBI τ-statistic

Trailing 1-m volatil ity 0.0292 1.87 0.11 0.13 4.02

Trailing 3-m volatil ity 0.0002 0.16 0.09 0.11 3.71

Implied volatil ity 0.0041 0.70 0.08 0.08 3.20

Trailing 1-m market return 0.0305 1.91 0.05 0.09 3.24

Trailing 3-m market return 0.0096 1.07 0.04 0.09 3.28

ST interest rate (level) 0.0262 1.77 0.07 0.09 3.30

ST interest rate (change) 0.0272 1.80 0.07 0.08 3.09

LT interest rate (change) 0.0000 0.07 0.06 0.06 2.81

Credit spread (change) 0.0014 0.41 0.02 0.06 2.75

Growth 0.0380 2.13 0.09 0.15 4.25

Payrolls 0.0003 0.17 0.07 0.08 3.15

Inflation 0.0090 1.04 0.08 0.15 4.23

Money supply 0.0645 2.78 0.15 0.18 4.70

Debt-to-GDP 0.0298 1.89 0.07 0.13 4.01

Linear Regression Relevance-Based Prediction
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however, we observe in Exhibit 8 that there were several points in time, such as 1997 and 2004, 

where it was the least important variable.  Conversely, in aggregate, the credit spread was the 

least important variable; however, in the mid- and late-1980s, it was one of the most important 

variables.   

Exhibit 8: Variable Importance (RBI) by Prediction  
In-Sample Q1 1986-Q4 2004 

 

  
 
 
 

Out-of-Sample Results 

We next compare linear regression analysis and relevance-based prediction in terms of their 

out-of-sample efficacy.  Specifically, using the same training data as in the previous section (Q1 

1986 through Q4 2004), we predict subsequent volatility outcomes for every quarter in the out-

of-sample period Q1 2005 through Q4 2023. 

 Exhibit 9 shows correlations between predictions and actual outcomes, as well as actual 

volatility for low and high predictions.  We observe that the relevance-based predictions (RBP in 

the table) are 52% correlated with actual outcomes, compared to only 25% for linear regression 

Trailing 1-m volatil ity

Trailing 3-m volatil ity

Implied volatil ity

Trailing 1-m market return

Trailing 3-m market return

ST interest rate (level)

ST interest rate (change)

LT interest rate (change)

Credit spread (change)

Growth

Payrolls

Inflation

Money supply

Debt-to-GDP

M
a

r-
8

6

M
a

r-
8

7

M
a

r-
8

8

M
a

r-
8

9

M
a

r-
9

0

M
a

r-
9

1

M
a

r-
9

2

M
a

r-
9

3

M
ar

-9
4

M
ar

-9
5

M
ar

-9
6

M
ar

-9
7

M
ar

-9
8

M
ar

-9
9

M
ar

-0
0

M
ar

-0
1

M
ar

-0
2

M
ar

-0
3

M
ar

-0
4



27 
 

analysis.  Moreover, when we focus on a subset of the most reliable relevance-based 

predictions as indicated by fit, we see an even stronger correlation with actual outcomes (60%).  

Similarly, the spread in actual volatility for low and high predictions is greater for relevance-

based prediction (1.63) than linear regression (1.04), and even more so for a subset of the 

highest fit predictions (2.31).12   

Exhibit 9: Prediction Performance 
Out-of-Sample Q1 2005-Q4 2023 

 

 
 
 

To further underscore the prediction-specific nature of RBI, Exhibit 10 shows a heat map 

of RBIs for every prediction in the out-of-sample period.  Consistent with the in-sample results, 

we observe considerable variation in RBI across prediction tasks.  Moreover, in comparing 

Exhibit 10 with Exhibit 8, both of which use the same training sample (Q1 1986-Q4 2004) and 

differ only in terms of their prediction tasks, we observe general shifts in variable importance. 

For example, for the in-sample predictions (Exhibit 8), money supply was the most important 

variable in aggregate; however, for the out-of-sample predictions (Exhibit 10), it is often the 

least important variable.  Conversely, the level of short term interest rates appears to be more 

important in the out-of-sample period.  

 

Correlation

with Actual Low Predictions High Predictions High / Low

Linear regression 0.25 1.02% 1.06% 1.04

RBP 0.52 0.79% 1.29% 1.63

RBP - High fit 0.60 0.71% 1.63% 2.31

Average Out-of-Sample Outcomes
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Exhibit 10: Variable Importance (RBI) by Prediction 
Out-of-Sample Q1 2005-Q4 2023 

 

 
 

 

Summary 

We considered three measures of variable importance:  RBI, a t-statistic, and a Shapley value.  

RBI measures importance as a variable’s contribution to the reliability of a prediction for 

individual predictions and on average across all predictions.  It follows naturally from the 

prediction grid, which is a key feature of relevance-based prediction.  A t-statistic measures 

importance as the amount of variation in the variable that is being predicted that can explained 

by a predictive variable.  It is used to measure variable importance in linear regression analysis.  

A Shapley value measures a variable’s contribution to explaining variation across predictions.  It 

is used to measure variable importance in machine learning models. 

 We described RBI in detail and listed its useful properties: 
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▪ RBI measures variable importance for individual predictions as well as on average across 

all predictions. 

▪ RBI measures total variable importance. 

▪ RBI is robust to conditionalities. 

▪ RBI accounts for a prediction’s reliability.  

We then compared RBI to a t-statistic and showed that a t-statistic has only one of the 

useful properties of RBI.  It accounts for reliability.  We also showed that average RBI converges 

almost exactly to a t-statistic in the special case in which the predictive variables are 

uncorrelated with one another and the relationship between the predictive variables and the 

outcomes is constant across all observations.  This convergence reveals a t-statistic to be a 

special case of RBI.  We conducted several simulations to support our claims about RBI and t-

statistics.  

Next, we compared RBI to a Shapley value.  We showed that a Shapley value has three 

of the four useful properties of RBI.  A Shapley value gives a measure of variable importance for 

individual predictions, it measures total importance, and it is robust to conditionality.  

However, a Shapley value fails to account for reliability when applied to individual predictions.  

Setting aside this distinction, though important, we showed that average RBI across prediction 

tasks closely matches a Shapley value of model-level reliability and derives from the same 

calculation principles.   

We then provided an empirical analysis of RBI.  We used 14 variables to predict stock 

market volatility using both linear regression analysis and relevance-based prediction.  Given 
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the same observations for training and testing both approaches, we showed that variable 

importance as measured by RBI changed significantly across prediction tasks both in sample 

and out of sample and that relevance-based predictions produced significantly more reliable 

predictions than linear regression analysis, especially for those predictions known in advance to 

be more reliable. 

Given this analysis, we propose RBI as a comprehensive alternative to a t-statistic and a 

Shapley value for measuring variable importance.  Of course, it is important to note that if one 

chooses to adopt RBI to measure variable importance, one must also choose relevance-based 

prediction to form predictions.  But this choice should not be difficult for many prediction 

circumstances, when one considers the many virtues of relevance-based prediction compared 

to linear regression analysis and machine learning models.13 
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Appendix A: RBI and Grid Weights 

Assuming we include every combination of variables in the grid of possibilities, including the 

null set of variables which always has adjusted fit of zero, there are 𝐺/2 = ∑ Δ𝑘(𝜃̃)𝜃̃  cells that 

include variable 𝑘, where 𝐺 is the total number of cells in the grid.  Therefore, we have the 

following expression.  

𝑅𝐵𝐼𝑡𝑘 = ∑ 𝛼𝜃
Δ𝑘(𝜃)(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝑡𝜃)−(1−Δ𝑘(𝜃))(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝑡𝜃)

𝐺/2𝜃   (A1) 

We can express RBI concisely as a weighted average of the adjusted fit of each cell.   

𝑅𝐵𝐼𝑡𝑘 =
1

𝐺
∑ 𝛼𝜃(4Δ𝑘(𝜃) − 2)(𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝑡𝜃)𝜃    (A2) 

Further, we can express variable importance equivalently in terms of 𝜓𝜃, the normalized 

adjusted fit weights for the grid from Equation 18 which are used to generate grid observation 

weights and grid predictions, and the average adjusted fit for the entire grid.   

𝑅𝐵𝐼𝑡𝑘 = (
1

𝐺
∑ 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑓𝑖𝑡𝑡𝜃̃𝜃̃ ) ∑ 𝜓𝜃[𝛼𝜃(4Δ𝑘(𝜃) − 2)]𝜃   (A3) 

Equation A3 highlights two interesting points.  First, it shows that RBI is fundamentally 

measured in units of adjusted fit and that it reflects both the overall reliability of the prediction 

as determined by the entire grid and the relative contribution of a predictive variable across the 

grid cells.  Second, it shows that all the information about relative variable importance for a 

given prediction is captured by a weighted average of the grid cell attribute [𝛼𝜃(4Δ𝑘(𝜃) − 2)] 

where the weights 𝜓𝜃 are the same as those used to compute the grid prediction and the grid 
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observation weights.  This fact underscores the essential nature of RBI within the paradigm of 

relevance-based prediction.   

 

Appendix B: Squared t-statistic and R-squared 

Without loss of generality, assume that the 𝑋 and 𝑌 variables are centered to have zero 

averages, 1𝑁
′ 𝑋 = 0 and 1𝑁

′ 𝑌 = 0, as additive shifts have no impact on t-statistics or R-squared 

for a linear regression model 𝑌 = 𝑋𝛽 + 𝜖 where 𝛽 is a column vector of coefficients.  The 

Ordinary Least Squares (OLS) estimate for the beta coefficients is 𝛽̂ = (𝑋′𝑋)−1𝑋′𝑌.  We express 

the 𝑘th coefficient as 𝛽̂𝑘 = 𝑑𝑘
′ (𝑋′𝑋)−1𝑋′𝑌 where 𝑑𝑘 is a column vector with 1 in the 𝑘th 

component and 0s elsewhere.  

Let us start by establishing some expressions for the total sum of squares (TSS), the 

explained sum of squares (ESS), and the residual sum of squares (RSS). 

𝑇𝑆𝑆 = 𝑌′𝑌     (A4) 

𝐸𝑆𝑆 = 𝛽̂′𝑋′𝑋𝛽̂     (A5) 

𝐸𝑆𝑆 = 𝑌′𝑋(𝑋′𝑋)−1𝑋′𝑋(𝑋′𝑋)−1𝑋′𝑌    (A6) 

𝐸𝑆𝑆 = 𝑌′𝑋(𝑋′𝑋)−1𝑋′𝑌     (A7) 

𝑅𝑆𝑆 = 𝑇𝑆𝑆 − 𝐸𝑆𝑆     (A8) 

𝑅𝑆𝑆 = 𝑌′𝑌 − 𝑌′𝑋(𝑋′𝑋)−1𝑋′𝑌    (A9) 
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The t-statistic for a coefficient is defined as the coefficient divided by the standard error of the 

coefficient: 

𝑡𝑘 =
𝛽̂𝑘

𝑆𝐸(𝛽̂𝑘)
     (A10) 

We are interested in the squared t-statistic which maps directly to its magnitude but does not 

preserve its sign: 

𝑡𝑘
2 =

𝛽̂𝑘
2

𝑉𝑎𝑟(𝛽̂𝑘)
     (A11) 

The covariance matrix of coefficient estimates is known to be expressed in terms of the 

unbiased estimate of the variance of the residuals 𝜎̂2: 

𝑉𝑎𝑟(𝛽̂) = 𝜎̂2(𝑋′𝑋)−1    (A12) 

𝑉𝑎𝑟(𝛽̂) =
𝑅𝑆𝑆

𝑁−𝐾
(𝑋′𝑋)−1    (A13) 

𝑉𝑎𝑟(𝛽̂) =
𝑌′𝑌−𝑌′𝑋(𝑋′𝑋)

−1
𝑋′𝑌

𝑁−𝐾
(𝑋′𝑋)−1   (A14) 

The variance of coefficient 𝑘 is the corresponding diagonal element of the covariance matrix: 

𝑉𝑎𝑟(𝛽̂𝑘) =
𝑌′𝑌−𝑌′𝑋(𝑋′𝑋)

−1
𝑋′𝑌

𝑁−𝐾
(𝑋′𝑋)𝑘𝑘

−1   (A15) 

Plugging the necessary definitions into the formula for the squared t-statistic gives: 

𝑡𝑘
2 =

𝑌′𝑋(𝑋′𝑋)
−1

𝑑𝑘𝑑𝑘
′ (𝑋′𝑋)

−1
𝑋′𝑌(𝑁−𝐾)

(𝑌′𝑌−𝑌′𝑋(𝑋′𝑋)−1𝑋′𝑌)(𝑋′𝑋)𝑘𝑘
−1     (A16) 

We would like to relate this expression to one involving R-squared statistics. The first R-squared 

statistic we consider is that of the full regression using all variables.  
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𝑅2 =
𝐸𝑆𝑆

𝑇𝑆𝑆
=

𝑌′𝑋(𝑋′𝑋)
−1

𝑋′𝑌

𝑌′𝑌
    (A17) 

Next, we consider the R-squared of a reduced model that removes variable 𝑘. The Sherman-

Morrison formula holds that the inverse of the reduced matrix without variable 𝑘 can be 

computed from the original full inverse with an adjustment. Note here that the new inverse is 

still expressed as a 𝐾-by-𝐾 matrix but the 𝑘th row and column are neutralized to zero.  

(𝑋\𝑘
′ 𝑋\𝑘)

−1
= (𝑋′𝑋)−1 −

(𝑋′𝑋)
−1

𝑑𝑘𝑑𝑘
′ (𝑋′𝑋)

−1

(𝑋′𝑋)𝑘𝑘
−1    (A18) 

The R-squared of the reduced variable model is: 

𝑅\𝑘
2 =

𝑌′𝑋((𝑋′𝑋)
−1

−
(𝑋′𝑋)

−1
𝑑𝑘𝑑𝑘

′ (𝑋′𝑋)
−1

(𝑋′𝑋)𝑘𝑘
−1 )𝑋′𝑌

𝑌′𝑌
   (A19) 

We take the difference between the full R-squared and the reduced variable model R-squared. 

𝑅2 − 𝑅\𝑘
2 =

𝑌′𝑋(𝑋′𝑋)
−1

𝑑𝑘𝑑𝑘
′ (𝑋′𝑋)

−1
𝑋′𝑌

𝑌′𝑌(𝑋′𝑋)𝑘𝑘
−1    (A20) 

Thus, we have: 

𝑡𝑘
2 =

(𝑅2−𝑅\𝑘
2 )(𝑁−𝐾)

(1−𝑅2)
     (A21) 
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Appendix C: Correlation of Predictive Variables 

Exhibit A1 shows the empirical correlations across the 14 predictive variables used to predict 

market volatility. 

 

Exhibit A1: Variable Correlations  
Q1 1986-Q4 2004 

 

 
 

 

A B C D E F G H I J K L M N

A Trailing 1-m volatil ity 1.00 0.78 0.85 -0.18 -0.50 0.00 -0.12 -0.05 0.34 -0.04 -0.13 -0.17 0.50 -0.47

B Trailing 3-m volatil ity 0.78 1.00 0.84 -0.03 -0.50 0.07 -0.12 0.10 0.17 0.06 -0.08 0.01 0.50 -0.28

C Implied volatil ity 0.85 0.84 1.00 -0.15 -0.44 0.10 -0.17 -0.03 0.31 0.02 -0.09 -0.06 0.54 -0.35

D Trailing 1-m market return -0.18 -0.03 -0.15 1.00 0.47 0.14 0.18 0.09 -0.13 0.28 0.29 0.02 -0.07 0.11

E Trailing 3-m market return -0.50 -0.50 -0.44 0.47 1.00 0.09 0.11 -0.09 -0.02 0.06 0.15 -0.08 -0.09 0.11

F ST interest rate (level) 0.00 0.07 0.10 0.14 0.09 1.00 0.35 0.00 0.11 -0.06 0.36 0.58 0.04 0.23

G ST interest rate (change) -0.12 -0.12 -0.17 0.18 0.11 0.35 1.00 0.51 -0.47 0.36 0.68 0.28 -0.28 -0.10

H LT interest rate (change) -0.05 0.10 -0.03 0.09 -0.09 0.00 0.51 1.00 -0.65 0.36 0.25 0.37 -0.26 -0.20

I Credit spread (change) 0.34 0.17 0.31 -0.13 -0.02 0.11 -0.47 -0.65 1.00 -0.40 -0.32 -0.29 0.26 -0.29

J Growth -0.04 0.06 0.02 0.28 0.06 -0.06 0.36 0.36 -0.40 1.00 0.74 -0.15 -0.31 0.13

K Payrolls -0.13 -0.08 -0.09 0.29 0.15 0.36 0.68 0.25 -0.32 0.74 1.00 0.09 -0.25 0.23

L Inflation -0.17 0.01 -0.06 0.02 -0.08 0.58 0.28 0.37 -0.29 -0.15 0.09 1.00 -0.11 0.33

M Money supply 0.50 0.50 0.54 -0.07 -0.09 0.04 -0.28 -0.26 0.26 -0.31 -0.25 -0.11 1.00 -0.17

N Debt-to-GDP -0.47 -0.28 -0.35 0.11 0.11 0.23 -0.10 -0.20 -0.29 0.13 0.23 0.33 -0.17 1.00
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Notes 

This material is for informational purposes only.  The views expressed in this material are the 
views of the authors, are provided “as-is” at the time of first publication, are not intended for 
distribution to any person or entity in any jurisdiction where such distribution or use would be 
contrary to applicable law and are not an offer or solicitation to buy or sell securities or any 
product.  The views expressed do not necessarily represent the views of Windham Capital 
Management, State Street Global Markets®, or State Street Corporation® and its affiliates. 

 

References 

Czasonis, Megan, Mark Kritzman, and David Turkington. 2022a. “Relevance.” The Journal of 

Investment Management, 20 (1). 

Czasonis, Megan, Mark Kritzman, and David Turkington. 2022b. Prediction Revisited: The 

Importance of Observation. Hoboken, New Jersey: John S. Wiley & Sons.  

Czasonis, Megan, Mark Kritzman, and David Turkington. 2023. “Relevance-Based Prediction: A 

Transparent and Adaptive Alternative to Machine Learning.” The Journal of Financial Data 

Science, 5 (1). 

Czasonis, Megan, Mark Kritzman, and David Turkington. 2024a. “The Virtue of Transparency: 

How to Maximize the Utility of Data Without Overfitting.” MIT Working Paper (July). 

Czasonis, Megan, Mark Kritzman, and David Turkington. 2024b. “A Transparent Alternative to 

Neural Networks with an Application to Predicting Volatility.” MIT Working Paper (September). 

Mahalanobis, Prasanta Chandra. 1936. “On the Generalised Distance in Statistics.” Proceedings 
of the National Institute of Sciences of India, 2 (1): 49–55.  

Shannon, Claude. 1948. “A Mathematical Theory of Communication.” The Bell System Technical 
Journal, 27 (July, October): 379–423, 623–656. 

Shapley, L. S. (1953), “A Value for n-Person Games,” in Contributions to the Theory of 
Games (Vol. II), eds. H. W. Kuhn and A. W. Tucker, Princeton, NJ: Princeton University Press, pp. 
307–318. 

 
 



37 
 

 
1 The descriptions of these concepts follow closely from Czasonis, Kritzman, and Turkington (2022a), Czasonis, 
Kritzman, and Turkington (2022b), Czasonis, Kritzman, and Turkington (2023), and Czasonis, Kritzman, and 
Turkington (2024a), and Czasonis, Kritzman, and Turkington (2024b), but they are modified to fit the context of the 
current discussion. 
2 This measure was first introduced by Mahalanobis (1936). 
3 Shannon showed that information is an inverse logarithmic function of probability, which is a key insight from his 
comprehensive theory of communication.  See Shannon (1948). 
4 See Czasonis, Kritzman, and Turkington (2023) for proof of this result.  
5 See Czasonis, Kritzman, and Turkington (2023) for proof of this result. 
6 See Czasonis, Kritzman, and Turkington (2022b) for proof of this result.  
7 See Appendix B for further discussion of this expression.  
8 Recall from Equation 12 that for the subset of variables that corresponds to any grid cell in the first row, the R-
squared of a linear regression with that subset of variables is precisely equivalent to the informativeness-weighted 
average of the task-specific fits of the corresponding predictions.  The same result holds for adjusted fit in the first 
row of the grid because asymmetry is zero for linear predictions.  These cell-specific equivalences hold exactly 
when informativeness is computed using the subset of variables for each cell.  Our result relating informativeness-
weighted average RBI for predictions from the first row of the grid to the R-squared equivalent across the first row 
of the grid is approximate because task informativeness measured across all predictive variables and applied to the 
adjusted fit of each cell’s variable subset does not recover the same task aggregation as taking a weighted average 
with the informativeness of each variable subset.  Nevertheless, it is astonishing how close of a near equivalence 
we observe empirically for the informativeness-weighted RBI.   
9 This near equivalence to strictly-positive increases in R-squared for linear regressions with larger numbers of 
predictive variables also implies that the informativeness-weighted average RBI is rarely negative for a variable and 
if so only because of approximation error.  This conceptual lower bound of zero for the aggregate importance of a 
variable across the training tasks occurs despite the perfectly reasonable occurrence of negative values for the RBI 
values of individual prediction tasks, as discussed earlier.  
10 The Shapley value has several desirable properties including efficiency, symmetry, linearity, and null player.  See 
Shapley (1953). 
11 The empirical example follows closely from Czasonis, Kritzman, and Turkington (2024b), however it differs in two 
key ways:  (1) We use non-overlapping quarterly observations of variables and outcomes whereas the cited paper 
uses overlapping monthly observations (2) We use a constant training sample from 1986 to 2004 to predict out-of-
sample outcomes beginning in 2005 whereas the cited paper uses a growing training sample from 1986 to form 
out-of-sample predictions beginning in 2000.  
12 We define high and low predictions as those in the top and bottom half of all predictions, respectively.  We 
define high fit predictions as those the 50% highest fits.  
13 To appreciate the many virtues of relevance-based prediction, see Czasonis, Kritzman, and Turkington (2023), 
Czasonis, Kritzman, and Turkington (2024a), and Czasonis, Kritzman, and Turkington (2024b).   
 
 


