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An Intuitive Approach 
to Investment Prediction 
with Machine Learning
Yimou Li, DaviD TurkingTon, anD aLireza YazDani

ABSTRACT: The complexity of machine learning 
models presents a substantial barrier to their adoption 
for many investors. The algorithms that generate 
machine learning predictions are sometimes regarded 
as a black box and demand interpretation. In this 
article, the authors present a framework for demys-
tifying the behavior of machine learning models. 
They decompose model predictions into linear, 
nonlinear, and interaction components and study a 
model’s predictive efficacy using the same compo-
nents. Together, this forms a fingerprint to summa-
rize key characteristics, similarities, and differences 
among different models. The presented framework 
is demonstrated in a case study applying random 
forest, gradient boosting machine, and neural network 
models to the challenge of predicting monthly currency 
returns. All models reliably identify intuitive effects 
in the currency market but also find new relationships 
attributable to nonlinearities and variable interac-
tions. The authors argue that an understanding of 
these predictive components may help astute investors 
generate superior risk-adjusted returns.

TOPICS: Statistical methods, simulations, 
big data/machine learning*

Machine learning has led to 
impressive results in many 
fields. Although the specific 
applications and types of 

models vary widely, they generally owe their 
success to greater computational efficiency 
paired with models that are less dependent 
on simplifying assumptions, such as styl-
ized forms of probability distributions, than 
those in the past. As a result, sophisticated 
machine learning models have the ability 
to capture nonlinear dependencies and 
interaction effects that may lead to superior 
predictions. On the other hand, the inherent 
complexity of these models creates chal-
lenges for interpretation and understanding. 
This issue is especially relevant to investment 
applications. Predicting time-series returns in 

• This article presents a framework for the implementation and interpretation of machine 
learning model predictions applied to investment portfolios.

• Model predictions are decomposed into the linear, nonlinear, and interaction components, 
and their predictive efficacy is evaluated using these components.

• Using a currency prediction case study, it is demonstrated that machine learning models 
reliably identify known effects and find new nonlinear relationships and interactions.

KEY FINDINGS

It 
is

 il
le

ga
l t

o 
m

ak
e 

un
au

th
or

iz
ed

 c
op

ie
s 

of
 th

is
 a

rti
cl

e,
 fo

rw
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r, 
or

 to
 p

os
t e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r p

er
m

is
si

on
.

http://www.PM-Research.com
mailto:yli24@statestreet.com
mailto:dturkington@statestreet.com
mailto:ayazdani@statestreet.com
https://www.iijournals.com/topic/statistical-methods
https://www.iijournals.com/topic/simulations
https://www.iijournals.com/topic/big-datamachine-learning


2   Beyond the Black Box: An IntuItIve ApproAch to Investment predIctIon wIth mAchIne LeArnIng Winter 2020

financial markets is fundamentally different from other 
mainstream applications of machine learning, such as 
image recognition, where the underlying data genera-
tion process is relatively stable over time. In contrast, the 
behavior of financial markets is ruled by constant change 
and uncertainty as a result of competitive dynamics and 
structural shifts. This means that data from more dis-
tant history may be less relevant for training machine 
learning algorithms, and we are left with an inherently 
short data sample and a low signal-to-noise ratio. Because 
of such unique characteristics of financial information, 
some practitioners (López de Prado 2019; Simonian and 
Fabozzi 2019) have called for establishing financial data 
science as a standalone field in its own right, wherein 
greater emphasis is placed on empiricism and data-
driven expansions of traditional financial econometrics.

The two primary goals of data analysis, as noted 
by Breiman (2001), are to make a prediction and to 
obtain information that aids in understanding. Along 
these lines, we pose two distinct questions:

1. Can machine learning algorithms detect patterns 
in financial data that lead to superior investment 
returns?

2. How do the algorithms process the data to form 
predictions?

In this article we attempt to answer these questions, 
particularly by proposing a methodology to address the 
second question, which is often neglected in the litera-
ture. Specifically, we propose a set of interpretability 
metrics, collectively named a model fingerprint, to decom-
pose the behavior of any model’s predictions into linear, 
nonlinear, and interaction effects among predictors. 
We also show how to decompose the model’s predictive 
efficacy into these components. Next, we explore these 
concepts in the context of foreign currency investing. 
We present a case study applying random forest, gra-
dient boosting machine, and neural network algo-
rithms to predict one-month-forward currency returns. 
We choose to illustrate these concepts in the currency 
market for a number of important reasons. The currency 
market is one of the largest and most actively traded 
global markets and thus a very important one for many 
investors. In particular, we study the behavior of a subset 
of exchange rate investments, consisting of all pairs 
(cross-rates) of the 10 largest currencies. Though the 
amount of data involved in currency prediction is not 

necessarily large, the problem is quite complex because 
of the many economic effects involved. Another moti-
vation for this case study is that, although there is a rich 
body of research in economics and finance to motivate 
the choice of predictor variables and provide helpful 
intuition, many traditional quantitative strategies have 
failed to deliver reliable results in the aftermath of the 
2008 financial crisis (Czasonis, Pamir, and Turkington 
2019). There is a practical need for improvement.

Previous research has applied machine learning 
to investment prediction, with encouraging results. 
Many such studies, however, have focused on secu-
rity selection within the equity market. For example, 
Heaton, Polson, and Witte (2016) explored the use of 
deep learning models for financial prediction problems, 
including pricing securities, constructing portfolios, and 
risk management. Gu, Kelly, and Xiu (2019) showed that 
the cross section of US stock returns can be predicted 
well with machine learning models, and neural networks 
in particular. Rasekhschaffe and Jones (2019) explored 
machine learning for stock selection and forecasting the 
cross section of stock returns. We extend this literature 
on empirical findings by offering promising results for 
currency market predictions.

Regarding model interpretation, theoretical re search 
has offered a variety of ways to study the information 
processing mechanisms of machine learning algorithms. 
Molnar (2019) provided a useful survey of existing 
approaches to interpretability, including ways to quan-
tify the inf luence of a given predictor toward the model 
outcome, as well as ways to analyze the nature of the 
relationship (e.g., linear, nonlinear) between predictors 
and outcome. For instance, it is common to compute a 
measure of variable importance to quantify the predictive 
strength of each input variable in a model, but the method 
for doing so is usually specific to the model in question, 
limited in scope, and far from unified. For example, the 
importance of a predictor in a multiple linear regression 
might be defined as the absolute value of its t-statistic. 
For tree-based models, however, the total reduction in 
prediction error over all nodes that select the variable 
of interest is commonly used. The list extends with 
many proposals of custom variable importance scores 
for specific model types (Kuhn 2008). A methodology 
known as partial dependency (Friedman 2001) can be 
used to understand the relationship between predictors 
and the model outcome. Another measure proposed by 
Greenwell, Boehmke, and McCarthy (2018) uses the 
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f latness of a predictor’s partial dependency as a measure 
of variable inf luence.

Our proposed approach, which we call a model 
fingerprint, is distinguished from those in the earlier 
literature. It decomposes model predictions into linear, 
nonlinear, and interaction components and offers an 
intuitive, model-independent notion of predictive effi-
cacy. The fingerprint metrics are expressed directly in 
units of the predicted returns, making them compa-
rable across any set of models. This approach offers valu-
able insights in understanding how a machine learning 
model outcome is affected by the presence of interactions 
among different drivers of performance.

We structure the remainder of the article as fol-
lows. First, we introduce our methodology for model 
f ingerprints, including a decomposition of a model’s 
predictions and a decomposition of its performance. 
Second, we present an intuitive application to currency 
investing, including an evaluation of performance on 
both training and testing samples. Last, we summarize 
and conclude.

M ETHODOLOGY

Machine Learning Models

The methodology we present for model finger-
prints is general and applies to any predictive model, 
but it is helpful to keep in mind some specific examples. 
In this paper, we consider three machine learning models. 
Even with just three models, this collection has diver-
sity in terms of model characteristics and capabilities, 
architecture complexity (e.g., nonlinear, tree based), and 
learning styles. We brief ly describe the three models and 
refer the interested reader to further machine learning 
resources, such as work by Kuhn and Johnson (2013) 
and Hastie, Tibshirani, and Friedman (2008), for details.

1. Random forests aggregate the outcomes of many 
simple decision trees developed independently on 
randomly selected subsets of predictors and data. 
This process, known as bootstrap aggregating or 
bagging (Hastie, Tibshirani, and Friedman 2008), 
aims to preserve the ability of tree-based models to 
capture conditional effects in data while mitigating 
their tendency to overfit the training sample.

2. Gradient boosting machines also use simple 
decision trees as base learners, but they use an addi-
tive model to minimize prediction errors (given a 

specified loss function) and proceed iteratively to 
fit the residuals from previous iterations, leading to 
a phenomenon known as boosting (Friedman 2001).

3. Neural networks consist of nested data processing 
layers transforming inputs into predictions. In deep 
networks, multiple nodes and hidden layers pro-
vide the capacity to model highly complex rela-
tionships (Goodfellow, Bengio, and Courville 
2016). In our application to currencies, we use a 
relatively shallow feed-forward network architec-
ture with no more than four hidden layers.

Model Fingerprints (Part 1): 
Decomposition of Predictions

After a model is selected and calibrated on training 
data, it can be used to map any desired set of input values 
into a predicted value. Although it is usually straightfor-
ward to calculate the prediction value, the actual pre-
diction mechanism can be quite intricate and difficult 
to visualize or understand for all but the simplest cases. 
Our goal is to summarize the characteristics of a given 
model in terms of its linear, nonlinear, and interaction 
effects. In particular, we quantify how much varia-
tion in predicted values results from variation in each 
input variable—and each pair of variables—in isolation, 
holding all else constant. We refer to this set of metrics 
as a fingerprint because it provides a concise and distinc-
tive description of the predictive characteristics of the 
calibrated model.

Our methodology modifies and extends the notion 
of partial dependence introduced by F riedman (2001). 
The partial dependence function captures the mar-
ginal prediction derived from the average effect of one 
variable in isolation. Let us denote a model prediction 
function as

 y f x x xm= …y f= …y f x x= …x xŷ fŷ f̂ ( ,x x( ,x x= …( ,= …x x= …x x( ,x x= …x x , ,= …, ,= … )1 2= …1 2= …x x= …x x1 2x x= …x x( ,1 2( ,= …( ,= …1 2= …( ,= …x x= …x x( ,x x= …x x1 2x x= …x x( ,x x= …x x  (1)

This prediction depends on each of the M input 
variables, whereas the partial dependence function only 
depends on one of the input variables, xk. For a given 
value of xk, this partial dependence function returns the 
expected value of the prediction over all other possible 
values for the other predictors, which we denote as x\k:

 y f x E f x x x f x x p x dxk ky fk ky f k xx Ek xx E m kf xm kf x k kx pk kx p x dk kx d kk
= =y f= =y f x E= =x E … =m k… =m k… =x x… =x xm k… =m k∫m k∫m kŷ fŷ f̂ ( )x E( )x Ek x( )k xx Ek xx E( )x Ek xx E= =( )= =x E= =x E( )x E= =x E [ ˆ( ,f x( ,f x , ,x x, ,x x… =, ,… =x x… =x x, ,x x… =x x )]m k)]m k… =)]… =m k… =m k)]m k… =m k

ˆ( ,f x( ,f xm k( ,m kf xm kf x( ,f xm kf x ) (x p) (x pk k) (k kx pk kx p) (x pk kx p )x d)x d1 2x x1 2x x( ,1 2( , \ \x p\ \x pk k\ \k kx pk kx p\ \x pk kx p x dk kx d\ \x dk kx dk k) (k k\ \k k) (k kx pk kx p) (x pk kx p\ \x pk kx p) (x pk kx p \\   
 

 (2)
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By marginalizing the prediction output over the 
distribution of all other predictor variables, the partial 
dependence function provides an intuitive sense for the 
marginal impact of the variable of interest, which we 
may think of as a partial prediction. In practice, the 
procedure to estimate the partial dependence function 
from the empirical data is as follows:

1. Choose a permissible value for xk.
2. Combine this value with one of the actual input 

vectors for the remaining variables, x\k, and 
generate a new prediction from the function: 
y f x x xm= …y f= …y f x x= …x xŷ fŷ f̂
generate a new prediction from the function: 

ˆ
generate a new prediction from the function: 

( ,x x( ,x x= …( ,= …x x= …x x( ,x x= …x x , ,= …, ,= … ).1 2= …1 2= …x x= …x x1 2x x= …x x( ,1 2( ,= …( ,= …1 2= …( ,= …x x= …x x( ,x x= …x x1 2x x= …x x( ,x x= …x x
3. Repeat step 2 with every input vector for x\k, 

holding the value for xk constant, and record all 
predictions.

4. Average all the predictions for this value of xk to 
arrive at the value of the partial prediction at that 
point, yxk

ˆ .
5. Repeat steps 1 through 4 for any desired values of 

xk and plot the resulting function.

The partial dependence function will have small 
deviations if a given variable has little inf luence on 
the model’s predictions. Alternatively, if the variable is 
highly inf luential, we will observe large f luctuations in 
prediction based on changing the input values. When 
this procedure is applied to an ordinary linear regres-
sion model, the plot will be a straight line with a slope 
equal to the regression coefficient of xk. Therefore, it is 
intuitive to view the partial dependence function as a 
generalized version of a regression coefficient that allows 
for nonlinear effects.

Next, we decompose a variable’s marginal impact 
into a linear component and a nonlinear component by 
obtaining the best fit (least squares) regression line for 
the partial dependence function. We define the linear 
prediction effect—the predictive contribution of the 
linear component—as the mean absolute deviation of 
the linear predictions around their average value.

 

Linear prediction effen effen e ct x

N N
f x

k

i

N

j

N

k kf xk kf x j∑ ∑∑ ∑l x∑ ∑l x
N∑ ∑Nk k∑ ∑k kl xk kl x∑ ∑l xk kl x i∑ ∑i∑ ∑abs∑ ∑abs∑ ∑abs∑ ∑abs∑ ∑= −∑ ∑l x∑ ∑l x= −l x∑ ∑l x= −= −∑ ∑= −∑ ∑abs∑ ∑abs= −abs∑ ∑abs
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∑ ∑∑ ∑∑ ∑∑ ∑= −∑ ∑∑ ∑= −∑ ∑∑ ∑


∑ ∑∑ ∑


∑ ∑


∑ ∑


∑ ∑∑ ∑
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= =N= =N j= =j= == =

   r p   r pre   redi   dict   ctio   ion e   n e  ( )

1 ˆ∑ ∑ˆ∑ ∑∑ ∑[ ]∑ ∑l x∑ ∑l x[ ]l x∑ ∑l xk k∑ ∑k k[ ]k k∑ ∑k kl xk kl x∑ ∑l xk kl x[ ]l xk kl x∑ ∑l xk kl x i∑ ∑i[ ]i∑ ∑i∑ ∑= −∑ ∑[ ]∑ ∑= −∑ ∑l x∑ ∑l x= −l x∑ ∑l x[ ]l x∑ ∑l x= −l x∑ ∑l x
1∑ ∑1∑ ∑ ˆ [ ]f x[ ]f xk k[ ]k kf xk kf x[ ]f xk kf x j[ ]j

1= =1= =
∑ ∑,∑ ∑∑ ∑[ ]∑ ∑,∑ ∑[ ]∑ ∑

1
,[ ],[ ]  (3)

In Equation 3, for a given predictor xk, the predic-
tion l xk kl xk kl x i

ˆ ( )l x( )l xk k( )k kl xk kl x( )l xk kl x i( )i,( ),( ) results from the linear least square fit of its 

partial dependence function, and xk,i is the ith value of 
xk in the dataset.

Next, we define the nonlinear prediction effect—
the predictive contribution of the nonlinear com-
ponent—as the mean absolute deviation of the total 
marginal (single variable) effect around its corresponding 
linear effect. When this procedure is applied to an ordi-
nary linear model, the nonlinear effects equal precisely 
zero, as they should.

 Nonlinear prediction effen effen e ct
N

abs f x l xk
i

N

k kf xk kf x i kl xi kl xk i∑= −f x= −f x= −= −
=

( )x( )xk( )k

1
  (abs  (abs  (∑  (∑  (abs  (abs  (∑  (∑= −  (= −abs= −abs  (abs= −abs= −  (= −∑= −∑  (∑= −∑ ˆ [ ]f x[ ]f x[ ]f x[ ]f xk k[ ]k kf xk kf x[ ]f xk kf x i k[ ]i k= −[ ]= −f x= −f x[ ]f x= −f x ˆ [(l x[(l x )])

1
, ,i k, ,i k k i, ,k i[ ], ,[ ]i k[ ]i k, ,i k[ ]i k[(, ,[(

  
 

 (4)

Exhibit 1 depicts these relationships graphically. 
The linear and nonlinear effects are intuitively related 
to the shaded areas, as shown in Exhibit 1.1

A similar method can be applied to isolate the 
interaction effects attributable to pairs of variables xk 
and xl, simultaneously. The procedure for doing this is 
the same as given earlier, but in step 1 values for both 
variables are chosen jointly.

 y f x x E E f x x xk ly fk ly fk ly fk ly f k lx xk lx x x x mk lx xk lx x= =y f= =y f x x= =x x x x…x xŷ fŷ f̂ ( ,x x( ,x xk l( ,k lx xk lx x( ,x xk lx x= =( ,= =x x= =x x( ,x x= =x x ) {E E) {E Ex x) {x xx xk lx x) {x xk lx x= =) {= = [ ˆ( ,f x( ,f x , ,x x, ,x x…, ,…x x…x x, ,x x…x x )]}, ,y f, ,y fk l, ,k ly fk ly f, ,y fk ly fk l, ,k ly fk ly f, ,y fk ly f 1 2x x1 2x x( ,1 2( ,  (5)

We define the pairwise interaction effect as the de-
meaned joint partial prediction of the two variables 
minus the de-meaned partial predictions of each vari-
able independently. When this procedure is applied to 
an ordinary linear model, the interaction effects equal 
precisely zero, as they should.

 

Pairwiseirwiseir interaction effen effen e ct x x

N
abs f x x f x f

k lx xk lx x

i

N

j

N

k lf xk lf xk i l jx fl jx fk kx fk kx f i lx fi lx f l j∑∑ x f= −x f= −x f= −x f= −f x= −f x= −= − x f−x f
= =

( ,x x( ,x xk l( ,k lx xk lx x( ,x xk lx x )

1
  [abs  [abs∑∑  [∑∑  [abs  [abs∑∑  [∑∑= −  [= −abs= −abs  [abs= −abs∑∑= −∑∑  [∑∑= −∑∑ ˆ ( ,f x( ,f x( ,f x( ,f xk i( ,k i= −( ,= −f x= −f x( ,f x= −f x x f)x fx f= −x f)x f= −x f̂ ( )x f( )x fk k( )k kx fk kx f( )x fk kx fx fi lx f( )x fi lx f̂ ( )x( )xl j( )l j ]2

1 1j1 1j= =1 1= =j= =j1 1j= =j
, ,f x, ,f xk l, ,k lf xk lf x, ,f xk lf xk i, ,k i( ,, ,( ,f x( ,f x, ,f x( ,f xk i( ,k i, ,k i( ,k i , ,x f, ,x f x f, ,x fl j, ,l jx fl jx f, ,x fl jx fk k, ,k kx fk kx f, ,x fk kx f x fk kx f, ,x fk kx fx f)x f, ,x f)x f x f( )x f, ,x f( )x fk k( )k k, ,k k( )k kx fk kx f( )x fk kx f, ,x fk kx f( )x fk kx f l j,l jl j( )l j,l j( )l j  (6)

Our approach to defining the pairwise interaction 
effect is conceptually similar to the H-statistic intro-
duced by Friedman and Popescu (2008). The H-statistic 
compares joint variable interactions to the sum of the rel-
evant individual variable effects, all measured with par-

1 This illustration is based on the random forest model, which 
will be discussed in the next section. The area under the curve is 
a stylized example that applies exactly if the predictor values are 
uniformly distributed across their domain. In practice, we sum the 
absolute deviations over all observed values for the predictor, so 
some parts of the predictive function will be more highly repre-
sented than others.
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tial dependence functions. It sums the squares of these 
incremental interaction effects across every data point 
and then divides by the sum of the squared total joint 
predictions. In other words, it equals the variance of 
incremental interaction effects divided by the variance of 
the total joint predictions. Our approach in Equation 6 
differs in two ways. First, we use the mean absolute devi-
ation to measure the extent of the effect, rather than the 
squared deviations (variance), which makes our measure 
less sensitive to outliers in the data. Second, we explicitly 
keep our measure in units of the predicted variable for 
easy interpretation and comparison to the linear and 
nonlinear prediction effects we measured previously, so 
we present the mean absolute deviation directly, without 
the denominator (normalization) that is included in the 
H-statistic.

Exhibit 2 shows an example of an isolated pairwise 
interaction effect in two dimensions. The total extent of 
the interaction effect is intuitively related to the volume 
under the surface defined by these two dimensions (anal-
ogous to the shaded areas in Exhibit 1).

The metrics we have described here offer attrac-
tive properties. First, they can be applied to any set of 
predictive models, and fingerprint results are comparable 
across them. Second, they measure linear, nonlinear, 
and interaction effects in common units that are eco-
nomically meaningful (units of the response variable 
that is being predicted). Third, they extend highly intui-
tive and familiar ordinary linear regression concepts to 
the machine learning models. In summary, they help 

demystify the drivers of model predictions and facilitate 
interpretations of why a model behaves the way it does.

Model Fingerprints (Part 2): 
Decomposition of Performance

Although the fingerprint metrics from Part 1 pro-
vide insight into the behavior of a predictive function, 
they do not provide any information about the effective-
ness of those predictions. We now turn our attention to 
this issue and apply the same framework to decompose 
prediction efficacy into its component parts. We choose 
to measure efficacy in terms of the performance of port-
folios formed from the model’s predictions. This way, the 
assessment is made in economically meaningful units, is 
diversified across assets (such as currency pairs) at each 
point in time to mitigate noise, and can be observed as 
a time series for additional insights.

We have already described the methodology to 
decompose the overall prediction function. To attri-
bute a model’s performance to its component parts, 
we extract partial predictions based only on a subset 
of the predictive components and form portfolios from 
those partial predictions. In Part 1, we discussed partial 
predictions based on the information from one input 
variable. The partial predictions that we consider now 
are aggregated across all of the predictor variables in the 
model, but they are partial in the sense that they only use 
a subset of the predictive components from our decom-
position (linear, nonlinear, and interaction effects).

e X H i B i T  1
Partial Prediction (left), Linear Effect (middle), and Nonlinear Effect (right)
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(7)

We compare the returns of portfolios built from 
different subsets of predictive components to arrive at 
time series of returns corresponding to each component.2 
In particular, we define each component as follows:

1. The linear (unconditional) performance effect 
is equal to the time series of returns of portfolios 
formed from linear predictions in isolation.

2. The pairwise interactions (conditional) perfor-
mance effect is equal to the time series of returns 
of portfolios formed from the combined linear and 
pairwise interaction predictions minus the time 
series of returns from step 1.

3. The nonlinear (sizing) performance effect is 
equal to the time series of returns of portfolios 
formed from the combined linear, nonlinear, and 

2 In our empirical analysis, we use a simple ranking and equal 
weighting to construct portfolios, but other portfolio construction 
methods could be used instead.

pairwise interaction predictions minus the time 
series of returns from steps 1 and 2.

4. The higher-order interactions performance 
effect is equal to the time series of returns of port-
folios formed from the full predictive model minus 
the time series of returns from steps 1, 2, and 3. 
This captures the inf luence of higher-order inter-
actions that occur above and beyond the pairwise 
interactions on the predictive models.3

The sequence in which we compute these per-
formance effects may at first seem strange, but it serves 
an important purpose. The interaction effects come 
second in the sequence because they are, in a sense, 
more fundamentally important to investment predic-
tion than are the nonlinear sizing effects. Interactions 
allow for conditional relationships between variables, 
and conditional relationships can dramatically change 
the directionality of a prediction. For example, suppose 
that variable A is a positive predictor when B is low 
but a negative predictor when B is high. Furthermore, 
imagine that variable A is a stronger predictor when 
its value is at extreme highs or lows than when it is 

3 We quantify the impact of higher-order interaction effects 
by exclusion because they are too numerous to evaluate directly.

e X H i B i T  2
Pairwise Interaction Effect
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in the middle of its range (a nonlinear effect). In this 
example, trying to isolate the nonlinear performance 
effect of A will produce very counterintuitive—and 
possibly meaningless—results if we do not account for 
its conditionality on B. The nonlinear performance in 
isolation implies a larger prediction for both high and 
low values of A (imagine a U-shaped curve). Only in 
combination with B do we see that half of these strong 
positions take the opposite sign when they enter into 
the full model’s prediction. Although it may not be pos-
sible to prevent this type of issue altogether, we suspect 
that for many popular models, considering interaction 
effects before nonlinear effects for performance decom-
position is likely to yield a more useful interpretive 
analysis. In summary, it seems reasonable to consider 
conditional relationships before nonlinear sizing effects. 
Lastly, it is worth noting that this issue does not affect 
the decomposition of predictions in the previous sec-
tion because that analysis is concerned with the mag-
nitude of predictive components and not their positive 
or negative direction.

EMPIRICAL APPLICATION TO FOREIGN 
CURRENCY INVESTING

In this section, we apply the three machine 
learning techniques described earlier to the task of for-
eign currency prediction. This real-world empirical 
study allows us to identify intuitive relationships using 
the model fingerprint approach. We begin by describing 
the currency model specif ication, data, and proce-
dure for training. It is critical to distinguish between 
performance in the training sample (before 2016) and 
performance in the testing sample (after 2016). First, 
we thoroughly examine the model f ingerprints for 
prediction and performance based on the training data 
to better understand the behavior and data processing 
mechanisms of each model. Second, we present perfor-
mance results and interpretation for the testing sample, 
which provides a realistic indication of how the models 
behave when exposed to previously unseen data.

Model Specification and Training

The goal of our empirical study is to predict one-
month-forward returns for major currencies. We focus 
on the total return of forward contracts because they 

represent investable exposures in the currency market.4 
We form a dataset of monthly returns for each of the 
exchange rate pairs from the G10 currencies: Australian 
dollar (AUD), Canadian dollar (CAD), Swiss franc 
(CHF), Euro (EUR),5 British pound (GBP), Japanese 
yen ( JPY), Norwegian krone (NOK), New Zealand 
dollar (NZD), Swedish krona (SEK), and US dollar 
(USD). Our full dataset includes the returns of each of 
the 90 currency pairs (quoted in both directions, to avoid 
the arbitrary effect of one quoting convention) observed 
for 351 months from January 1990 to March 2019, for 
a total of 31,950 observations. We split the data into a 
training sample spanning January 1990 to December 
2015 and a test sample spanning January 2016 to March 
2019, which we reserve for final performance evaluation.

We structure the prediction problem as a panel 
regression: the return of a given currency pair at a given 
point in time is to be predicted with the information 
available about that pair. The panel regression combines 
cross-sectional and time-series information, allowing 
the model to be trained on increased variability from a 
greater number of observations.6 We deliberately restrict 
our attention to a narrow set of established currency 
factors as predictors. This simplicity makes it easier to 
view the similarities and differences in how each model 
processes the data to form predictions. Each predictor is 
motivated by established results in the currency market:

1. The short-term interest rate differential between  
countries forms the basis for the carry trade, where 
forward contracts for currencies with higher 
interest rates have historically outperformed those 
with lower interest rates (Burnside, Eichenbaum, 
and Rebelo 2011).

4 A currency forward contract is an agreement to buy or sell a 
given currency versus another currency at some point in the future. 
The market price of the forward rate is determined by a no-arbitrage 
condition called Covered Interest Parity because one may achieve 
the same payout as the forward contract by borrowing money in one 
currency and investing it in the other. Thus, a currency position—
whether implemented using a forward contract or by borrowing 
and investing across countries—is self-funding and has a total return 
equal to the interest rate differential between the two countries plus 
the change in the spot exchange rate over the investment horizon. 
We model actual forward prices, which are investable.

5 Before the introduction of the Euro, we proxy it with the 
German mark.

6 The information about a given currency pair partly overlaps 
with the information about other pairs that contain one of the same 
currencies. However, the information is not completely redundant 
and therefore helps in model training.
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2. The trailing five-year spot return adjusted for 
trailing five-year inf lation differential pro-
vides an indication of the deviation from fair value 
for a currency pair, based on the notion of relative 
purchasing power parity, and underpins the valu-
ation trade. Currencies that are undervalued have 
historically outperformed those that are overvalued 
(Czasonis, Pamir, and Turkington 2019).

3. The trailing one-year spot return for a cur-
rency pair informs a trend strategy. Currencies 
that recently rose in value have historically out-
performed those that recently lost value (Burnside, 
Eichenbaum, and Rebelo 2011).

4. The trailing one-year equity return differen-
tial between countries constitutes an equity differ-
ential trade. Currencies whose local equity market 
has risen recently have historically outperformed 
those whose equity market has done relatively 
poorly (Turkington and Yazdani 2019).

5. Currency market turbulence is a multivariate 
unusualness score of the currency market based on 
the Mahalanobis distance (Kritzman and Li 2010), 
and we employ it as a measure of the overall market 
risk profile that is more persistent than the vola-
tility of individual currency pairs. Larger magni-
tude return swings and correlation breakdowns 
both increase the amount of turbulence observed. 
Some currency factors, such as the carry trade, 
have historically behaved very differently during 
turbulent versus quiet periods.

Hyperparameter tuning is an important issue 
that affects the training of machine learning models. 
Hyperparameters differ by model, but examples include 
the number and depth of decision trees in a random 
forest, the depth and sample rate of trees in a gradient 
boosting machine, and the activation function and size 
of hidden layers in a neural network. It is often desir-
able for these parameter choices to be informed directly 
by the data. The goal of proper calibration is to achieve 
(near) optimal performance of a model for the task at 
hand, while minimizing the risk of overfitting in the 
training sample. As such, hyperparameter tuning can 
be challenging and a task that requires an extra layer 
of data processing. To this end, we use a 10-fold cross-
validation approach to identify the most desirable set of 
hyperparameters while mitigating the risk of overfitting 

to the data. In essence, cross validation creates synthetic 
unseen evaluation samples from subsets of the training 
data. Specifically, we divide our panel of training data 
into 10 contiguous and nonoverlapping blocks of time. 
For a given set of hyperparameters, we fit the model on 
every combination of nine blocks and evaluate model 
performance using root mean squared error (RMSE) 
on the remaining block. We store the composite predic-
tive performance (RMSE across all evaluation blocks) 
of the model under the current set of hyperparameters 
and then search for the hyperparameters that result in 
the best overall fit.

The overall performance of machine learning 
regression models is typically evaluated using measures 
such as R2 and RMSE. Although these measures can 
be informative, they may not adequately ref lect how a 
model performs in a financial portfolio setting. Thus, it 
is prudent to test the return and risk performance of real-
istic portfolios formed from model predictions. To do 
this, we identify for each month the 27 currency pairs 
with the largest prediction magnitude and assign long 
or short positions depending on each prediction’s direc-
tional sign. The selection of 27 out of the 45 nonover-
lapping pairs ensures a diversified portfolio by avoiding 
significant exposure to one single currency and is in line 
with a traditional top three, bottom three approach to 
building long–short currency portfolios.

Model Fingerprints: Evaluation 
on the Training Sample

Exhibit 3 presents the model fingerprints of pre-
dictor inf luence. It is notable that the relative size of 
linear effects is nearly identical across all three models 
(even though their absolute size differs). All models 
exhibit the most nonlinearity with respect to the interest 
rate differential factor but differ in their other nonlinear 
effects. The interaction between currency turbulence 
and interest rate differential is deemed the most salient 
pairwise interaction effect in each case, but again the 
other interaction effects vary across the models. A closer 
look into the interaction heatmaps shown in Exhibit 4 
reveals that all three models make predictions in line with 
the conventional carry trade (based on the interest rate 
differential) when turbulence is low. However, during 
highly turbulent regimes, all three models reverse this 
relationship. This interaction effect aligns with previous 
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e X H i B i T  3
Model Fingerprints (decomposition of predictions)
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research on how turbulent regimes affect the carry trade 
(Kritzman and Li 2010).

Exhibit 5 presents the model f ingerprints from 
the perspective of predictive efficacy. Pairwise interac-
tions suggest conditional relationships at each point in 
time. Higher-order interactions performing in the same 
direction as the pairwise (as is often the case in 2008, 
for example) indicates that the higher-order conditional 
effects are confirming and even amplifying the same 

understanding as the pairwise effects. On the other 
hand, there are times when the two move in opposition, 
which indicates that the higher-order interaction effects 
are neutralizing or reversing the pairwise effect based 
on the confounding inf luence of other conditions that 
prevail at that time. In fact, all three models exhibit a 
large loss in 2002 that would have occurred from pair-
wise interactions but was overturned by a higher-order 
consideration in all three cases. Overall, the performance 

e X H i B i T  4
Interaction Effects between Interest Rate Differential and Currency Turbulence

1.0 1.0

1.0

0.8 0.8

0.8

0.7 0.7

0.7

0.6 0.6

0.6

0.4 0.4

0.4

0.3 0.3

0.3

0.2 0.2

0.2

0.0

0.05%

0.05%

0.05%

0.02%

0.01%

–0.05%

–0.05%

–0.05%

0.05%

0.05%

0.05%

0.02%

0.01%

–0.05%

–0.05%

–0.05%

0.05%

0.05%

0.05%

0.02%

0.01%

–0.05%

–0.05%

–0.05%

0.04%

0.04%

0.04%

0.02%

0.01%

–0.05%

–0.05%

–0.05%

–0.04%

–0.04%

–0.04%

–0.02%

–0.01%

0.05%

0.05%

0.05%

–0.05%

–0.05%

–0.05%

–0.02%

–0.01%

0.05%

0.05%

0.05%

–0.05%

–0.05%

–0.05%

–0.02%

–0.01%

0.05%

0.05%

0.05%

–0.05%

–0.05%

–0.05%

–0.02%

–0.01%

0.05%

0.05%

0.05% 0.0

0.18%

0.18%

0.18%

0.18%

0.13%

–0.23%

–0.23%

–0.23%

0.18%

0.18%

0.18%

0.18%

0.13%

–0.23%

–0.23%

–0.23%

0.18%

0.18%

0.18%

0.18%

0.13%

–0.23%

–0.23%

–0.23%

–0.04%

–0.04%

–0.04%

–0.04%

–0.01%

0.04%

0.04%

0.04%

–0.04%

–0.04%

–0.04%

–0.04%

–0.01%

0.04%

0.04%

0.04%

–0.15%

–0.15%

–0.15%

–0.15%

–0.12%

0.18%

0.18%

0.18%

–0.15%

–0.15%

–0.15%

–0.15%

–0.12%

0.18%

0.18%

0.18%

–0.15%

–0.15%

–0.15%

–0.15%

–0.12%

0.18%

0.18%

0.18%

0.0

–0.4% –0.3% –0.2% –0.1% 0.1% 0.2% 0.3% 0.4% –0.4% –0.3% –0.2% –0.1% 0.1% 0.2% 0.3% 0.4%

0.44%

0.25%

0.09%

–0.04%

–0.13%

–0.20%

–0.24%

–0.26%

–0.4%

0.36%

0.21%

0.08%

–0.02%

–0.10%

–0.16%

–0.20%

–0.23%

–0.3%

0.25%

0.15%

0.06%

–0.01%

–0.07%

–0.12%

–0.15%

–0.17%

–0.2%

0.13%

0.08%

0.04%

0.00%

–0.03%

–0.06%

–0.08%

–0.10%

–0.1%

–0.03%

–0.01%

0.01%

0.01%

0.01%

0.01%

0.00%

0.00%

0.1%

–0.20%

–0.11%

–0.04%

0.02%

0.06%

0.09%

0.11%

0.12%

0.2%

–0.40%

–0.24%

–0.10%

0.02%

0.11%

0.18%

0.23%

0.26%

0.3%

–0.61%

–0.38%

–0.17%

0.02%

0.17%

0.29%

0.37%

0.43%

0.4%

C
ur

re
nc

y 
T

ur
bu

le
nc

e

Random Forest Gradient Boosting Machine

Neural Network

Interest Rate Differential Interest Rate Differential

Interest Rate Differential

C
ur

re
nc

y 
T

ur
bu

le
nc

e

C
ur

re
nc

y 
T

ur
bu

le
nc

e

It 
is

 il
le

ga
l t

o 
m

ak
e 

un
au

th
or

iz
ed

 c
op

ie
s 

of
 th

is
 a

rti
cl

e,
 fo

rw
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r, 
or

 to
 p

os
t e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r p

er
m

is
si

on
.



The Journal of Financial Data Science   11Winter 2020

decomposition provides insights into the degree to which 
a model relies on the component prediction effects.

Performance in the Training Sample

We are particularly interested in whether machine 
learning strategies exceeded the performance of tradi-
tional currency strategies and a benchmark linear regres-
sion model. A key consideration when training machine 
learning models is to reduce overfitting by avoiding 
aggressive data mining. To this end, we followed conven-
tional practice in structuring the training and validation 
process to minimize the expected gap in performance in 
the training versus testing sample. Of course, we must 
still acknowledge that even with the cross-validation 
process, which mitigates the potential to overfit the data, 
these models have been selected for their performance on 
the training sample and have therefore benefited from 
learning some of the features of the training data on 
which we are evaluating performance here. Even with 
this caveat, a thorough analysis of training sample per-
formance is important to gain an understanding of what 
each model is thinking. In the next section, we will 
evaluate performance in the testing sample.

Exhibits 6 and 7 present training sample perfor-
mance across all models, including portfolios that are 
formed on only one predictive variable in isolation 
(carry, trend, valuation, and equity differential). In terms 

of risk-adjusted return (information ratio), machine 
learning models outperformed the linear model, which 
in turn outperformed the simple traditional strategies. 
Grading boosting had the best in-sample performance, 
with the highest annualized returns and one of the lowest 
levels of risk. At the same time, returns from the gradient 
boosting machine had the highest excess kurtosis, indi-
cating a propensity for occasionally extreme monthly 
returns. It is also interesting to note the strong similarity 
in returns for the gradient boosting and neural network 
models. Both outperform the other models by a signifi-
cant margin, which perhaps is to be expected given the 
nonlinear and interaction effects they find.

Performance in the Testing Sample

The understanding we have gained so far allows us 
to make interpretations about model tendencies, simi-
larities, differences, and performance in the training 
sample. The performance reliability of a model is 
ref lected not only in its training sample performance 
but also when evaluated on unseen test data. Exhibits 8 
and 9 present the results for the testing sample. As in 
the training sample, gradient boosting machine per-
forms well, continuing to generate comparatively high 
returns and low risk. However, the overall performance 
gap with other models is not as wide, which may indi-
cate a mild degree of (inevitable) overf itting by the 

e X H i B i T  5
Model Fingerprints (decomposition of performance)
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e X H i B i T  6
Portfolio Performance Summary Statistics (training data)

Return

Risk

Ratio

Skewness

Kurtosis

Hit Rate

Carry
3.27%

6.50%

0.50

–0.69

1.24

0.63

Trend
0.91%

6.75%

0.13

0.10

3.97

0.52

Valuation
1.70%

5.82%

0.29

0.99

4.89

0.51

Equity
Differential
2.68%

5.00%

0.54

–0.26

0.84

0.57

Linear
Model
3.66%

5.22%

0.70

–0.60

2.02

0.63

Random
Forest
3.92%

5.40%

0.73

–0.73

2.21

0.66

Gradient
Boosting Machine

6.12%

4.94%

1.24

0.32

4.93

0.68

Neural
Network
5.83%

5.41%

1.08

0.25

3.16

0.67

e X H i B i T  7
 Portfolio Cumulative Returns for Different Strategies (training data)
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Trend

gradient-boosting model. Overall, there is a convergence 
in performance during this sample, with little separation 
across the linear model and machine learning models. 
Most of the traditional currency strategies underper-
formed, with the exception of the equity differential. 
This may indicate a reduced opportunity set based on 
the predictor variables we have included.

Exhibit 10 shows the performance decomposition 
of the machine learning models over the testing sample 
and supports a similar conclusion. Again, the authors 

stress that their goal in this article is to understand the 
tendencies of each model and to be able to demystify the 
components of performance by attributing them to their 
component parts. The authors have intentionally erred 
on the side of simplicity and have not tried to build the 
best possible model. Exploring a wider range of variables 
and models to enhance performance further would be 
an interesting and useful extension of our case study for 
currency investing.
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CONCLUSION

The authors argue that developing reliable and 
intuitive interpretation is essential for the application of 
machine learning to investing. The authors introduce 
a framework for computing the fingerprint of machine 
learning models to summarize the linear, nonlinear, and 
pairwise and high-order interaction effects that drive 
both predictions and performance. The framework the 
authors propose is general and applicable to any pre-
dictive model, including base and ensemble models. 

The authors f ind that the results are highly intuitive 
and informative in a real-world application to currency 
prediction. Interestingly, our findings reveal as much 
about the similarities between models as they do about 
the differences. Despite possible concerns about com-
plex models and their propensity to overfit, we find that 
random forest, gradient boosting machine, and neural 
network predicted linear effects are nearly indistin-
guishable from those of an ordinary linear regression. 
Where the models do behave differently, the finger-
print decompositions help identify the most important 

e X H i B i T  8
Portfolio Performance Summary Statistics (test data)

Return
Risk
Ratio
Skewness
Kurtosis
Hit Rate

Carry

–0.37

1.85%
4.14%
0.45

0.25
0.56

Trend

–1.82%
4.84%
–0.38
–0.21
0.94
0.56

Valuation

1.85%
4.23%
0.44
0.09
–0.39
0.46

Equity
Differential

3.37%
3.98%
0.85
0.71
0.99
0.56

Linear
Model

4.04%
4.31%
0.94
0.04
0.28
0.67

Random
Forest

3.52%
3.66%
0.96
–0.36
1.14
0.64

Gradient
Boosting Machine

3.82%
3.88%
0.99
–0.01
1.14
0.64

Neural
Network

3.96%
4.18%
0.95
–0.39
0.83
0.62

e X H i B i T  9
Portfolio Performance for Different Strategies (test data)
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components of prediction and performance, allowing for 
further analysis and deeper understanding. We believe 
that machine learning holds great promise for finan-
cial prediction and insight, but it is crucial for investors 
to apply domain expertise and intuition as part of the 
process. Additional tools will be required to meet this 
need. Most importantly, we argue that it is not neces-
sary to view machine learning as a black box. People 
often trust and learn from others’ perspectives despite an 
incomplete understanding of how that person’s brain or 
thought process actually works. Likewise, we can derive 
insights from machine learning models if we understand 
their tendencies and personalities, or more aptly, their 
machinalities.
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Carry On
Megan Czasonis, Baykan PaMir, and david TurkingTon

The Journal of Alternative Investments
https://jai.pm-research.com/content/22/2/100

ABSTRACT: The carry trade in foreign currencies is known for 
delivering positive returns, on average, and for occasionally suffering 
large losses. While these characteristics prevail, on average, across 
time and across currency pairs, the authors find that interest rate 
differentials on their own are not sufficient to identify conditions in 
which currencies reliably exhibit these return and risk attributes. They 
use three variables—valuation, crowding, and volatility—to identify 
time periods and cross-sections of currencies in which the carry trade 
performs best. They document a substantial difference in performance 
between the carry trade applied to high-volatility versus low-volatility 
currency pairs. In the full sample from 1984 to 2017, carry in high-
volatility pairs has consisted of currencies that are undervalued, on 
average, experience greater swings in valuation, and have boom and 
bust cycles aligned with investor crowding. This finding is consistent 
with the notion that carry represents a risk premium. Carry in low-
volatility pairs has the opposite characteristics. Though both strategies 
performed well prior to the 2008 financial crisis, only carry in high-
volatility pairs has worked since.

Triumph of the Empiricists: The Birth of Financial 
Data Science
JosePh siMonian and Frank J. FaBozzi

The Journal of Financial Data Science
https://jfds.pm-research.com/content/1/1/10

ABSTRACT: The authors situate financial data science within the 
broader history of econometrics and argue that its ascendance marks a 
reorientation of the field toward a more empirical and pragmatic stance. 
They also argue that owing to the unique nature of financial infor-
mation, financial data science should be considered a field in its own 
right and not just an application of data science methods to finance.
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